VLBI modeling and data analysis

Thomas Artz

Institut für Geodäsie und Geoinformation

Rheinische Friedrich-Wilhelms-Universität Bonn

2013/03/04

Educational Objectives

you should understand

- different steps of VLBI analysis
- geometry of VLBI observations
- set-up criteria
 - estimated params
 - datum definition
- 4 how to constrain params
- individual and global solutions

Table of contents

1 Recap: least squares adjustment

2 Delay model and theoretical delay

3 Parameter Estimation

- Initial solution
- Independent solution
- Global solution
- References

Modeling and analysis \rightarrow adjustment theory

http://www.blogohblog.com

modeling

understanding physical and stochastical properties of observations \rightarrow mathematical models

analysis

investigate estimated parameters and their stochastical properties

Modeling

Adjustment

Analysis

Non-linear models

modeling

determination of good apriori values \Rightarrow convergence of LSQ to global minimum

$$\mathbf{y}_{i} = \varphi(\mathbf{x}) = a \cdot \sin(b \cdot t_{i})$$

$$\Rightarrow \mathbf{x} = \begin{pmatrix} a \\ b \end{pmatrix}$$
non-linear model \Rightarrow linearization
$$\mathbf{x} = \frac{\partial \varphi(\mathbf{x})}{\partial \mathbf{x}} \quad \mathbf{A} = \frac{\partial \varphi(\mathbf{x})}{\partial \mathbf{x}} \quad \mathbf{A} = \frac{\partial \varphi(\mathbf{x})}{\partial \mathbf{x}} \quad \mathbf{A} = \mathbf{x} = \mathbf{y} = \mathbf{y$$

formulation of delay in frame where radio sources have no apparent motions w.r.t. telescopes

Station positions at reception epoch

station positions

- are given for reference epoch
- various well known geophysical effects
- used as a priori information

Transformations \rightarrow CRF

sources and (corrected) station positions not in same reference system \Rightarrow transformations necessary (Earth orientation)

$$W^{T} = iZ_{2}(X) \cdot iZ_{4}(Y) = \begin{pmatrix} \cos X & 0 & -\sin x \\ 0 & 1 & 0 \\ \sin x & 0 & \cos X \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos y & \sin y \\ 0 & -\sin y & \cos y \end{pmatrix}$$

$$x & y \quad small = \int \sin x = X, \quad \cos x = 1$$

$$= \int W^{T} = \begin{pmatrix} 1 & 0 & -x \\ 0 & 1 & 0 \\ x & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 7 \\ 0 & -7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & xY & -x \\ 0 & 1 & Y \\ x & -7 & 1 \end{pmatrix}$$

VLBI data analysis | Delay model and theoretical delay

Solar System Barycenter (SSB) frame

most natural frame for calculation of theoretical delay

Observation equations

functional model

$$y_i = \tau = -\frac{1}{c} \left(\mathbf{x}_a(t_i) - \mathbf{x}_b(t_i) \right) \cdot \mathbf{R} \cdot \mathbf{k} \cdot \left(1 - F(\mathbf{v}, \mathbf{v}^b) \right) + \tau_{corr}$$

$$\begin{aligned} \mathbf{R} = \mathbf{W}(x_p, y_p) \cdot \mathbf{S}(UT1) \cdot \mathbf{PN}(X, Y) \\ F(\mathbf{v}, \mathbf{v}^b) = & \frac{(\mathbf{v} + \mathbf{v}^b) \cdot \mathbf{k}}{c} - \frac{(\mathbf{v} \cdot \mathbf{k})^2 - 2(\mathbf{v} \cdot \mathbf{k})(\mathbf{v}^b \cdot \mathbf{k})}{c^2} - \frac{(\mathbf{b} \cdot \mathbf{v})(\mathbf{v}^b \cdot \mathbf{k})}{c^3} \\ &- \frac{(\mathbf{b} \cdot \mathbf{v})(\mathbf{v} \cdot \mathbf{k})}{2c^3} \end{aligned}$$

- W polar motion matrix
- s rotational motion matrix
- N nutation matrix
- P precession matrix

 $\mathbf{x}_{a/b}(t_i)$ stations positions of a and b geophysical modeling applied

- t_i epoch of reception at a
- b baseline vector
- k source unit vector in CRF
- F abberation
- velocioty of geocenter in SSB frame
- **v**^b velocity of station b w.r.t. geocenter

Corrections

$$y_i = \tau = -\frac{1}{c} \mathbf{b}(t_i) \cdot \mathbf{R} \cdot \mathbf{k} \cdot \left(1 - F(\mathbf{v}, \mathbf{v}^b)\right) + \tau_{corr}$$

τ_{corr}

signal variations which are not assigned to station or source positions or Earth orientation

- clock synchronization
- ionosphere
- troposphere
- gravitational bending
- (thermal expansion)

. . .

Theoretical delay

$$y_i = \tau = -\frac{1}{c} \mathbf{b}(t_i) \cdot \mathbf{R} \cdot \mathbf{k} \cdot \left(1 - F(\mathbf{v}, \mathbf{v}^b)\right) + \tau_{corr}$$

inserting a priori knowledge about the individual components into functional model \Rightarrow theoretical delay τ_{comp}

a priori information

is not sufficient to describe observations \Rightarrow systematics in

$$\Delta \mathbf{y} = \boldsymbol{\tau}_{comp} - \boldsymbol{\tau}_{obs} = \mathbf{o} - \mathbf{c}$$

 \Rightarrow estimate parameters

Theoretical delay in a nutshell

- **1** get TRF station positions at reference epoch $(\mathbf{x}_0 + \dot{\mathbf{x}} \cdot (t_i t_0))$
- 2 apply displacements
- Build rotation matrix due to a priori EOPs
- calculate geometric delay and account for special relativistics
- 5 calculate and apply correction terms if possible

Clocks

$$y_i = \tau = -\frac{1}{c} \mathbf{b}(t_i) \cdot \mathbf{R} \cdot \mathbf{k} \cdot \left(1 - F(\mathbf{v}, \mathbf{v}^b)\right) + \tau_{corr}$$

station clocks are not perfectly synchronized \Rightarrow offsets and drifts and ... between time tags which directly appear as polynomial systematics in residuals

Ambiguity resolution

Ambiguity spacing can be determined from channels in bandwidth synthesis

lonosphere

Clock refinement

CPWLF: $f(t) = f(t_0) + r_1(t_1 - t_0) + r_2(t_2 - t_1)$ $+ ... + r_n(t - t_{n-1})$ $r_i = \frac{f(t_i) - f(t_{i-1})}{t_i - t_{i-1}}$
$$\begin{split} f(t) = & f(t_0) + \frac{f(t_1) - f(t_0)}{t_1 - t_0} (t_1 - t_0) \\ & + \frac{f(t_2) - f(t_1)}{t_2 - t_1} (t_2 - t_1) + \dots \end{split}$$

 $\frac{\partial f}{\partial f_i} = \begin{cases} \frac{t - t_{i-1}}{t_i - t_{i-1}} & \text{for } t_i < t < t_{i+1} \\ 0 & \text{all other cases} \end{cases}$

Troposphere 1

hydrostatic part

90 % of the tropospheric delay, modeled, e.g, Saastamoinen (1973)

7

$$\tau_{at,h}(\epsilon) = m_h(\epsilon) \frac{0.0022768 \cdot p}{1 - 0.00266 \cdot \cos(2\phi) - 0.28 \cdot 10^{-6}h}$$

mapping function m_h : hydrostatic NMF (Niell, 1996) or VMF (Boehm et al., 2006)

T. Artz | iggBonn | 2013/03/04

Troposphere 2

wet part

```
estimated \Rightarrow partial derivatives
```

$$\tau_{at,w} = at \cdot m_w(\epsilon)$$
$$\frac{\partial \tau}{\partial at} = \frac{\partial \tau_{at,w}}{\partial at} = m_w(\epsilon)$$

typically CPWLF with 1 h and below

troposphere gradients

azimuthal asymmetries \Rightarrow estimation of troposphere gradients in north-south and east-west direction (e.g., MacMillan 1995 or Chen and Herring 1997)

VLBI data analysis | Parameter Estimation | Initial solution

Initial solution in a nutshell

- estimate clock polynomial
- resolve ambiguities
- 3 calculate ionosphere correction

- find and remove outliers
- estimate clocks and ZWDs: CPWLF with 60 min resolution and 24 h troposphere gradients
- 7 find and remove outliers or possibly restore earmarked observations
 8 export V4 DB

see also: http://lacerta.gsfc.nasa.gov/mk5/help/solve_guide_01.html

Independent solution

aim: individual solution for each experiment to generate time series of

- station positions
- EOPs
- source positions
- nuisance parameters

http://ccivs.bkg.bund.de

Constraints on CPWLF params

no pseudo-observation: no rate between sub-sequent params

$$cl^a_{i+1} - cl^a_i = 0$$

$$\mathbf{A} = \left(\begin{array}{ccc} \cdots & \frac{\partial \tau}{\partial cl_i^a} & \frac{\partial \tau}{\partial cl_{i+1}^a} & \cdots \\ \underline{\mathcal{O}}^\mathsf{T} & \underline{\mathcal{O}}^\mathsf{T} & \mathbf{1} & \underline{\mathcal{O}}^\mathsf{T} \end{array} \right)$$

typical constraint σ

- clocks: 10⁻¹⁴
- ZWD: 20 ps/h
- gradients: 2 mm/d & 1 mm

Datum definition

-s <u>3</u> STÀ EOP -> 3 6 rank deficiency

condition: optimal station estimates \Rightarrow minimizing $trace(\Sigma_{xx})$

$$\Sigma_{xx} = \mathbf{N}^{-1} \quad \text{singularity}$$

$$\Sigma_{xx} = \sum_{i=1}^{m} \frac{1}{\lambda_i} \mathbf{u}_i \cdot \mathbf{u}_i^T, \quad m : \#\lambda \neq 0$$

$$\longrightarrow \text{pseudo inverse}$$

Datum: geometrical interpretation

NNR/NNT condition: helmert parameter = 0

$$\mathbf{B}_{i} = \begin{pmatrix} 1 & 0 & 0 & 0 & -Z_{i} & Y_{i} \\ 0 & 1 & 0 & Z_{i} & 0 & -X_{i} \\ 0 & 0 & 1 & -Y_{i} & X_{i} & 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} \dots & \frac{\partial \boldsymbol{\tau}}{\partial X_1} & \frac{\partial \boldsymbol{\tau}}{\partial Y_1} & \frac{\partial \boldsymbol{\tau}}{\partial Z_1} & \dots & \frac{\partial \boldsymbol{\tau}}{\partial X_2} & \frac{\partial \boldsymbol{\tau}}{\partial Y_2} & \frac{\partial \boldsymbol{\tau}}{\partial Z_2} & \dots \end{pmatrix}$$
$$\boldsymbol{\beta_1}^{\mathsf{T}} \qquad \boldsymbol{\beta_2}^{\mathsf{T}}$$

EOP determination

significant correlations between EOPs and other parameter when NNR/NNT conditions are applied

reliable VLBI EOPs

can only be determined when station positions are fixed

VLBI data analysis | Parameter Estimation | Global solution

Stacking sessions

CRF/TRF solution

- clocks, tropospheric parameters, EOPs and other nuisance params stay session parameters
- station, sources and axis offsets positions are stacked
- some stations and sources stay session parameters
- station velocities are set-up

 \Rightarrow consistent TRF, CRF, and EOPs

References I

- J. Boehm, B. Werl, and H. Schuh. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-range Weather Forecasts operational analysis data. <u>J Geophys Res</u>, 111: B02406, feb 2006. doi: 10.1029/2005JB003629.
- G. Chen and T. A. Herring. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. <u>J</u> <u>Geophys Res</u>, 102(B9):20489-20502, Sept. 1997. doi: 10.1029/97JB01739.
- D. MacMillan. Atmospheric gradients from very long baseline interferometry observations. <u>Geophys Res Lett</u>, 22 (9):1041-1044, 1995. doi: 10.1029/95GL00887.
- A. E. Niell. Global mapping functions for the atmosphere delay at radio wavelengths. <u>J Geophys Res</u>, 101(B02): 3227–3246, 1996. doi: 10.1029/95JB03048.
- G. Petit and B. Luzum. IERS Conventions 2010. IERS Technical Note 36, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, 2011. (available electronically at http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html).
- J. Saastamoinen. Contributions to the theory of atmospheric refraction. Part II. Refraction corrections in satellite geodesy. Bull. Géod., Nouvelle Sér., Année 1973, 107(107):13–34, 1973.
- O. J. Sovers, J. L. Fanselow, and C. S. Jacobs. Astrometry and geodesy with radio interferometry: experiments, models, results. <u>Rev Mod Phys</u>, 70:1393–1454, Oct. 1998. doi: 10.1103/RevModPhys.70.1393. (available electronically at http://arxiv.org/abs/astro-ph/9712238).
- F. Takahashi, T. Kondo, Y. Takahashi, and Y. Koyama. <u>Very Long Baseline Interferometer</u>. Wave Summit Course. Ohmsha, Ltd. / IOS Press, Feb. 2000. ISBN 1-58603-076-0.