Correlators

Walter Brisken

NRAO / MPIfR

2016 Mar 10

Introduction

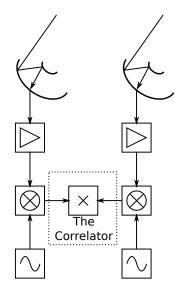
- * I will explain how visibilities are formed
- * I won't explain what to do with them!
 - Roger will in the analysis lecture
- * This is a very mathematical subject
 - Rigor is balanced with simplicity
 - Some calculation details are in the appendix
 - Several signal processing concepts are explained along the way
 - Slow me down and ask questions as necessary!

Why learn about correlators?

- * Understand interferometry data products
- * Design interferometric experiments properly
- * Implement or improve upon a correlator
- * To operate a correlator
- * To achieve an enhanced state of enlightenment

The VLBI Context

- * Radio antennas/receivers measure electric field vectors
- These are handed to the correlator as voltage time series
- * Here we are concerned with cross correlations of these
- * 2 (or more) antennas and a correlator form a radio interferometer



Part 1: The real correlator

- * Definition
- Correlation of functions
- * Correlation of sampled data
- * Noise and sensitivity
- * The complex-valued visibility

What is a cross-correlator?

Formal definition

Any implementation the cross-correlation function,

$$C_{ij}(\tau) = \operatorname{Corr}[v_i, v_j] = \langle v_i(t)v_j(t+\tau) \rangle$$

given two real-valued functions, $v_i(t)$ and $v_j(t)$.

Colloquial definition

The device that calculates the above for a VLBI (or other astronomical) observation across 2 or more antennas, each with 1 or 2 polarization components, 1 or more spectral windows with use of delay model functions $\tau_{ij}(t)$ appropriate for the source being studied.

Some nuances

- * The calculatd value, $C_{ij}(au)$, is a statistic
 - Must average over many (independent) samples to be meaningful
 - \circ For a bandwidth of $\Delta\nu,$ one independent sample every $\Delta t = 1/2\Delta\nu.$
- * Calculation is generally explicitly time-bounded
- * Usually is computed on uniformly sampled data:

$$C_{ij}[k] = \frac{1}{N} \sum_{l=1}^{N} v_i[l] v_j[l+k]$$

with integer k and l

 $* k \text{ or } \tau \text{ is called the } lag$

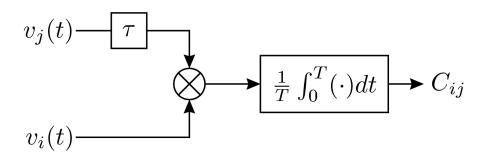
Example 1

- * Use signals $v_1(t) = \sin 2\pi \nu t$ and $v_2(t) = \cos 2\pi \nu t$.
- * Take limiting case as time range extends infinitely.

$$C_{12}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \cos 2\pi t \sin 2\pi (t+\tau) dt$$
$$= -\frac{1}{2} \sin 2\pi \nu \tau$$

- st Narrow-band signals have large support over au.
- * Sums of pure tones (as here) have support even as $|\tau| \to \infty$.
- * See appendix for detailed derivation.

Schematic



Normalized correlation coefficient

* Often one is interested in a normalized value (independent of scale)

$$\Gamma_{ij}(\tau) = \frac{\langle v_i(t)v_j(t+\tau)\rangle}{\sqrt{\langle v_i(t)^2\rangle \langle v_j(t+\tau)^2\rangle}}$$

- The denominator is the geometric mean of the two signals' autocorrelations
- * Γ_{ij} is a measure of how similar the two signals are
 - \circ Can prove $\Gamma_{ij}(\tau)=\pm 1$ if and only if $v_i(t)\propto \pm v_j(t+\tau)$.
 - \circ Can prove $|\Gamma_{ij}(\tau)| \leq 1$
- * For $v_1(t) = \sin 2\pi \nu t$ and $v_2(t) = \cos 2\pi \nu t$:

$$\Gamma_{ij}(\tau) = -\sin 2\pi\nu\tau$$

* Thus the cosine function is the same as the sine function with a n-1/4 period shift.

Finite energy signals

- * Some signals are zero outside a finite time range
 - \circ Or diminish sufficiently fast such that $\lim_{T \to \infty} \int_{-T}^T v(t)^2 dt = C$
- * Time averages of cross- and auto-correlations $\to 0$ as $T \to \infty$
- * In such cases one can take the limit as follows:

$$\Gamma_{ij}(\tau) = \lim_{T \to \infty} \frac{\frac{1}{2T} \int_{-T}^{T} v_1(t) v_2(t+\tau) dt}{\sqrt{\frac{1}{2T} \int_{-T}^{T} v_1(t)^2 dt} \sqrt{\frac{1}{2T} \int_{-T}^{T} v_2(t+\tau)^2 dt}}$$
$$= \lim_{T \to \infty} \frac{\int_{-T}^{T} v_1(t) v_2(t+\tau) dt}{\sqrt{\int_{-T}^{T} v_1(t)^2 dt} \sqrt{\int_{-T}^{T} v_2(t+\tau)^2 dt}}$$

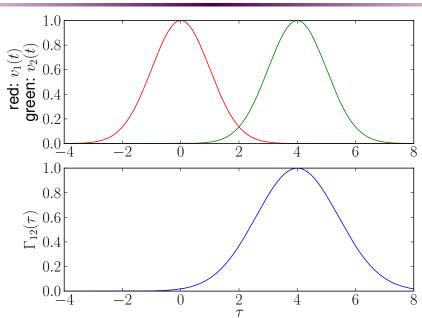
Example 2

- * Cross-correlate $v_1(t) = e^{-t^2/2}$ against $v_2(t) = e^{-(t-t_0)^2/2}$
- * For simplicity make use of $v_1(t) = v_2(t+t_0)$:

$$\Gamma_{12}(\tau) = \frac{\int_{-\infty}^{\infty} v_1(t)v_2(t+\tau)dt}{\int_{-\infty}^{\infty} v_1(t)^2dt}$$
$$= e^{-(\tau-t_0)^2/4}$$

- * Result could be predicted without grungy math:
 - Correlation of time symmetric signals is equivalent to convolution
 - Convolution of two Gaussians is a wider Gaussian (sum in quadrature)
 - \circ Signals are the same when $au=t_0$
- More complete derivation in appendix

Example 2 (continued)



Correlation of sampled data

- * Sampled data can be treated in similar manner as a continuous function
- * Replace integrals by sums
- * Require sampled data streams both be uniformly sampled at same interval, Δt
- * Sampled signals must be band-limited with $\Delta \nu \leq 1/2\Delta t$ (Nyquist sampling theorem)
- * Note: sampled does not imply quantized; ignore quantization here
- * Given $v_i[l]$ and $v_i[l]$, the corresponding quantities are:

$$C_{ij}[k] = \frac{1}{N} \sum_{l=1}^{N} v_i[l] v_j[l+k]$$

$$\Gamma_{ij}[k] = \frac{\sum_{l=1}^{N} v_i[l] v_j[l+k]}{\sqrt{\sum_{l=1}^{N} v_i[l]^2} \sqrt{\sum_{l=1}^{N} v_j[l+k]^2}}$$

Example 3: Seismology

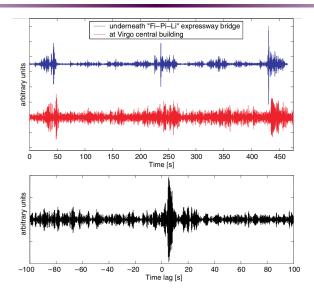
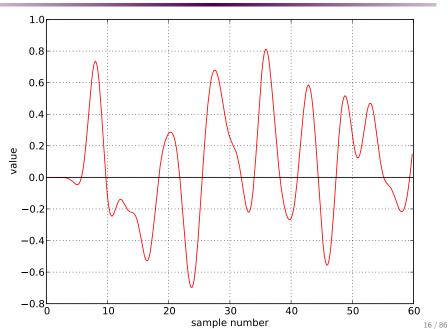
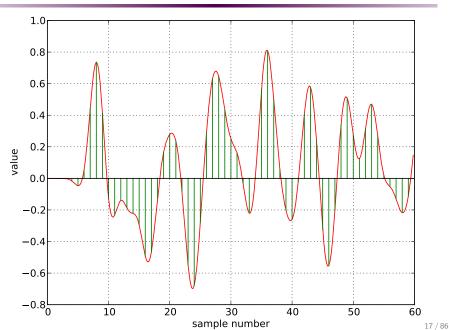


Image from Einstein Telescope design study document, 2011

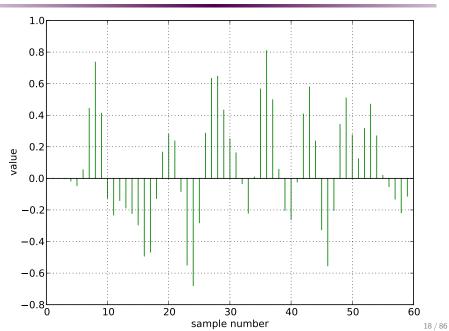
Sampling band-limited signal: original signal



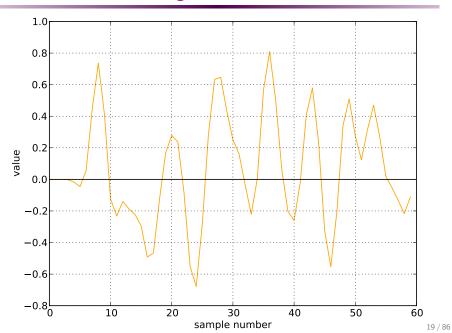
Capture signal every unit interval



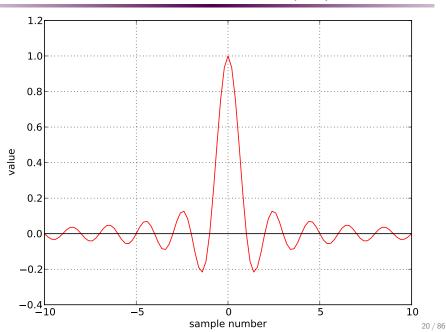
Retain only samples



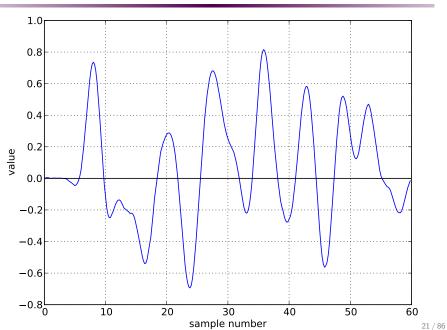
Naive signal reconstruction



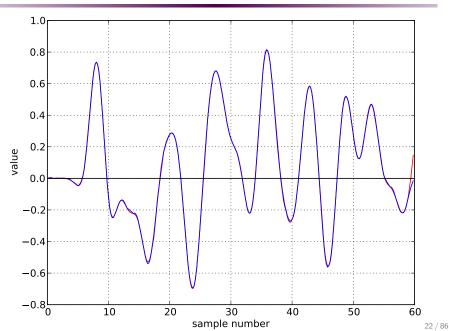
The interpolation function (sinc)



Properly interpolated function



Comparison of original and reconstructed signals



Correlation of Gaussian noise

- * Take 2 sampled signals, $\mathfrak{g}_1[l]$ and $\mathfrak{g}_2[l]$, where
 - \circ Each $\mathfrak{g}_i[k]$ is drawn from a zero mean, unit norm Normal distribution
 - $\circ~\langle \mathfrak{g}_i
 angle = 0$, $\left\langle \mathfrak{g}_i^2
 ight
 angle = 1$ (which implies $C_{ij} = \Gamma_{ij}$)
 - $\circ \langle \mathfrak{g}_i \mathfrak{g}_i \rangle = \delta_{ij}$ (defines uncorrelated noise)
- * The expectation value of the correlation function vanishes

$$C_{12}[k] = \frac{1}{N} \sum_{i=1}^{N} \mathfrak{g}_1[l]\mathfrak{g}_2[l+k] = 0$$

* But its RMS does not

$$\sigma_{C_{12}[k]} = \frac{1}{\sqrt{N}}$$

- * This is the basis for calculating interferometer sensitivity
- * See appendix for details

Correlation of signals with noise (at zero delay)

* $Corr[v_i, v_j]$ is *bilinear* in its signal arguments:

$$\operatorname{Corr}[\alpha \, a_i + \beta \, b_i, \gamma \, c_j + \delta \, d_j] = \alpha \, \gamma \operatorname{Corr}[a_i, c_i] \\ + \alpha \, \delta \operatorname{Corr}[a_i, d_i] \\ + \beta \, \gamma \operatorname{Corr}[b_i, c_i] \\ + \beta \, \delta \operatorname{Corr}[b_i, d_i]$$

* A simplistic signal model for observation of a point source is

$$v_1[k] = S[k] + N_1[k] = \sqrt{s} \,\mathfrak{g}_0[k] + \sqrt{n_1} \,\mathfrak{g}_1[k]$$

 $v_2[k] = S[k] + N_2[k] = \sqrt{s} \,\mathfrak{g}_0[k] + \sqrt{n_2} \,\mathfrak{g}_2[k]$

- * Where S[k] and both $N_i[k]$ are all independent Gaussian noise streams.
- * \mathfrak{g}_i are unit norm zero mean Gaussian streams.
- * For convenience, s and n_i are dimensioned as powers.

Correlation of signals with noise (at zero delay)

* Make use of bilinearity and previous relations:

$$C_{ij}[0] = \langle SS \rangle + \langle N_1 S \rangle + \langle SN_2 \rangle + \langle N_1 N_2 \rangle$$
$$= \frac{1}{N} \sum_{l=1}^{N} S[l]^2$$
$$= s$$

* And normalized correlation coefficient:

$$\Gamma_{ij}[0] = \frac{s}{\sqrt{s+n_1}\sqrt{s+n_2}}$$

* In the low signal to noise limit $(s \ll \min n_1, n_2)$

$$\Gamma_{ij}[0] = \frac{s}{\sqrt{n_1 n_2}}$$

Correlation of signals with noise (at zero delay)

* Noise does not enter the expectation value of C_{ij} , but it does the uncertainty:

$$\sigma_{C_{ij}[0]} = \sqrt{\frac{2s^2 + n_1s + sn_2 + n_1n_2}{N}}$$

- * Some messy statistics used, left as exercise to the astute reader!
- * In the low signal to noise limit

$$C_{ij}[0] = s \pm \sqrt{\frac{n_1 n_2}{N}}$$

$$\Gamma_{ij}[0] = \frac{s}{\sqrt{n_1 n_2}} \pm \frac{1}{\sqrt{N}}$$

* Exercise to reader: consider the strong signal case.

Quick aside: interferometer sensitivity

* Previous page allows one to write down the SNR for a measurement:

$$SNR = \frac{s\sqrt{N}}{\sqrt{n_1 n_2}} = \frac{s\sqrt{N}}{\sqrt{SEFD_1 SEFD_2}}$$

* Usually instead the sensitivity of the baseline is expressed:

$$\Delta S = \frac{\sqrt{\text{SEFD}_1 \text{SEFD}_2}}{\sqrt{N}} = \frac{\sqrt{\text{SEFD}_1 \text{SEFD}_2}}{\sqrt{2\Delta \nu T}}$$

- * SEFD is the System Equivalent Flux Density
 - \circ SEFD $=T_{
 m sys}/g$ where g is antenna gain (units of K/Jy)
 - \circ Equals the brightness (in Jy) of a source required to double antenna noise power $(T_{\rm sys})$
 - VLBA antenna SEFD is typically 300 to 500 Jy.
- * Additional efficiency factors may apply (e.g., quantization)

The (optical) double slit experiment

- * The film at the image plane of a double slit is a correlator!
- * $\tau = \tau_2 \tau_1$ is the path length difference
- * Monochrome signal hits mask $v(t) = \cos 2\pi \nu t$
- * Signals at image:

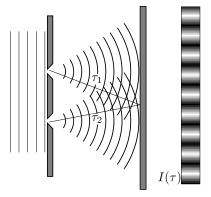
$$v_1(t) = \cos 2\pi \nu (t - \tau_1)$$

$$v_2(t) = \cos 2\pi \nu (t - \tau_2)$$

* Intensity at image:

$$I(\tau) \propto \left\langle (v_1(t) + v_2(t))^2 \right\rangle$$

= $1 + \cos 2\pi \nu \tau$



- * This is an additive correlator
- * The constant term is the total power
- * The brightness ripples are fringes

Correlation of quasi-monochromatic signals

- * As seen before cross correlation of two equal-frequency signals gives sinusoidal response with respect to τ .
- * Sinusoids have two free parameters: amplitude and phase.
- * Seems silly to need more than two measurements to completely characterize correlator response.
- * Solution: measure two lags, separated by 90 degrees of phase!

$$C_{ij}(\tau) = C_{ij}(0)\cos 2\pi\nu\tau + C_{ij}(1/4\nu)\sin 2\pi\nu\tau$$

* For convenience, bundle into a single complex number

$$V_{ij} = V_{ij}(0) + iV_{ij}(1/4\nu)$$

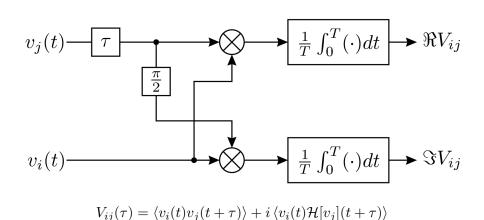
* This is proportional to the familiar visibility. And then

$$V_{ij}(\tau) = \operatorname{Re}\left(V_{ij}e^{2\pi i\nu\tau}\right)$$

Part 2: The complex correlator

- * The complex correlator
- * The Hilbert transform
- * Analytic signals
- * Complex sampling

Schematic of complex correlator



Analytic signals

st Given a real-valued signal v(t), define analytic signal

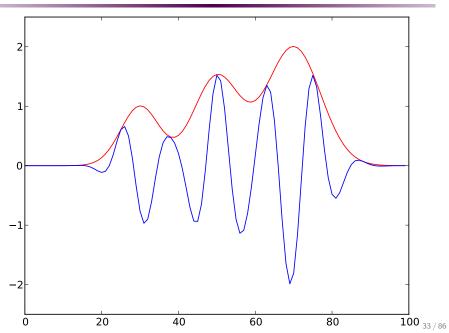
$$w(t) = v(t) + i\mathcal{H}[v(t)]$$

* Here ${\cal H}$ is the Hilbert transform

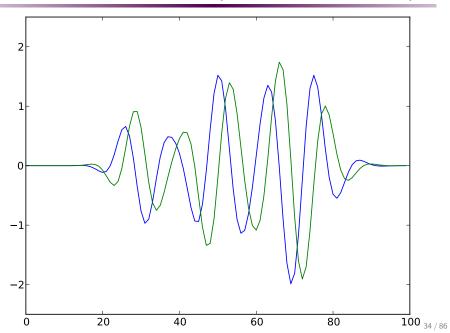
$$\circ \mathcal{H}[v(t)] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{v(s)}{t - s} ds$$

- $\circ \cos \rightarrow \sin \text{ and } \sin \rightarrow -\cos$
- $\circ \ \mathcal{H}[\mathcal{H}[v(t)]] = -v(t)$ (the operation is invertable)
- * Analytic signals are mathematical tools
 - Allows complex multiplication
 - Simplifies Fourier transforms
 - Simplifies fringe rotation
- * Remember: $\operatorname{Im}(w(t))$ is not physical
- * See https://en.wikipedia.org/wiki/Analytic_signal for a good discussion

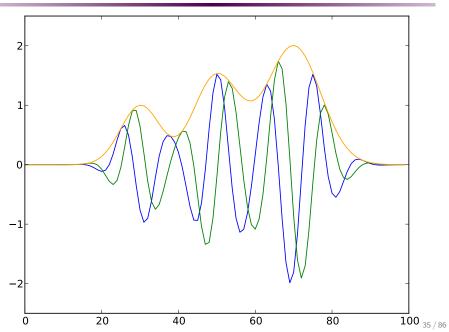
Hilbert transform example: amplitude modulated signal



Compute Hilbert transform (blue + i green is analytic)



Reconstruct envelope (sum blue & green in quadrature)



Analytic signal properties

* Energy content is double:

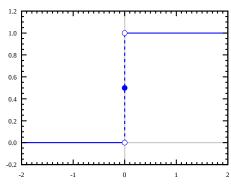
$$\int w(t)^* w(t) dt = 2 \int v(t)^2$$

* Fourier transform has no negative frequency components:

$$\mathcal{F}[w(t)](\nu) = 2H(\nu)\mathcal{F}[v(t)](\nu)$$

where the Heaviside step function is:

$$H(\nu) = \begin{cases} 0 & \nu < 0 \\ 1/2 & \nu = 0 \\ 1 & \nu > 0 \end{cases}$$



Complex sampled data

- st Start with a real sampled signal, v[k]
- * Can compute the sampled equivalent of an analytic signal using discrete Hilbert transform

$$\mathcal{H}(v)[k] = \begin{cases} \frac{2}{\pi} \sum_{n \text{ odd}} \frac{v[n]}{k - n} & k \text{ even} \\ \frac{2}{\pi} \sum_{n \text{ even}} \frac{v[n]}{k - n} & k \text{ odd} \end{cases}$$

- * Resultant signal, $v[k] + i\mathcal{H}(v)[k]$, carries duplicate information
- * Can drop alternate samples to define:

$$w[k] = v[2k] + i\mathcal{H}(v)[2k]$$

* Note that sample rate simply is inverse bandwidth: $\Delta t = 1/\Delta \nu$ \circ Clock rate of digital electronics can be halved!

Correlation of complex signals

- * Make use of the power of complex numbers
- * Note use of complex conjugation

$$Corr[w_i^*, w_j] = \langle w_i^* w_j \rangle$$

$$= \langle v_i v_j \rangle + i \langle v_i \mathcal{H}[v_j] \rangle - i \langle \mathcal{H}[v_i] v_j \rangle + \langle \mathcal{H}[v_i] \mathcal{H}[v_j] \rangle$$

$$= 2 \langle v_i v_j \rangle + 2i \langle v_i \mathcal{H}[v_j] \rangle$$

$$= 2V_{ij}$$

- * The above equation holds for continuous or sampled signals
- * Equality of the second and third expressions can be shown through spectral analysis

Spectral decomposition of signals

* A band-limited signal can be expressed analytically as

$$w(t) = \int_0^{\Delta \nu} e^{2\pi i t \nu} \, \tilde{w}(\nu) \, d\nu$$

- * Where $\tilde{w}(\nu)^* \tilde{w}(\nu)$ is proportional to the spectral power density of the signal at frequency ν .
- * Nyquist sampling simply captures this each $\Delta t = 1/\Delta \nu$:

$$w[k] = \int_0^{\Delta \nu} e^{2\pi i k \Delta t \nu} \, \tilde{w}(\nu) \, d\nu$$

* The correlation function can be calculated as:

$$V_{ij}(\tau) = \int_{\nu_1}^{\nu_2} e^{2\pi i \nu \tau} \, \tilde{w}_i(\nu)^* \, \tilde{w}_j(\nu) \, d\nu$$

Part 3: The lag (XF) correlator

- * Concept
 - First cross-multiply and accumulate (X)
 - Then Fourier transform (F)
- * Spectral response
- * Realization of lag correlators in practice
- * Examples of lag correlators

The complex lag correlator

- * Generally speaking, Fourier transforming a time series leads to its frequency series (i.e., spectrum)
- * $V_{ij}(\tau)$ can be considered a time series in τ
- * What if we discrete Fourier transform it?
- * Assume n lags, each spaced by the sample rate, Δt
- * V_{ij} is complex-valued, so total bandwidth is $\Delta
 u = 1/\Delta t$

$$\tilde{V}_{ij}[l] \equiv \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{-2\pi i k l/n} V_{ij}[k]$$

$$= \int_{0}^{\Delta \nu} A_{n} \left(\frac{l}{n} - \nu \Delta t\right) \tilde{w}_{i}(\nu)^{*} \tilde{w}_{j}(\nu) d\nu$$

- * Where did this come from?
- * What does it mean?

The lag correlator revisited

Do you want this explained in gory detail?

. . .

$$\tilde{V}_{12}[l] \equiv \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{-2\pi i k l/n} V_{12}[k]$$

$$= \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} \frac{1}{N} \sum_{j=1}^{N} e^{-2\pi i k l/n} w_1[j]^* w_2[j+k]$$

$$= \int_0^{\Delta \nu} d\nu_1 \int_0^{\Delta \nu} d\nu_2 \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} \frac{1}{N} \sum_{j=1}^{N} e^{-2\pi i k l/n}$$

$$\times e^{2\pi i \Delta t j \nu_1} \tilde{w}_1(\nu_1)^* e^{2\pi i \Delta t (j+k) \nu_2} \tilde{w}_2(\nu_2)$$

The lag correlator revisited ...

$$\tilde{V}_{12}[l] = \int_{0}^{\Delta\nu} d\nu_{1} \int_{0}^{\Delta\nu} d\nu_{2} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{-2\pi i k \left(\frac{l}{n} - \nu_{2} \Delta t\right)} \\
\times \frac{1}{N} \sum_{j=1}^{N} e^{2\pi i \Delta t j (\nu_{2} - \nu_{1})} \, \tilde{w}_{1}(\nu_{1})^{*} \, \tilde{w}_{2}(\nu_{2}) \\
\sim \int_{0}^{\Delta\nu} d\nu_{1} \int_{0}^{\Delta\nu} d\nu_{2} \, A_{n} \left(\frac{l}{n} - \nu_{2} \Delta t\right) \delta(\nu_{2} - \nu_{1}) \, \tilde{w}_{1}(\nu_{1})^{*} \, \tilde{w}_{2}(\nu_{2}) \\
= \int A_{n} \left(\frac{l}{n} - \nu \Delta t\right) \, \tilde{w}_{1}(\nu)^{*} \, \tilde{w}_{2}(\nu) \, d\nu$$

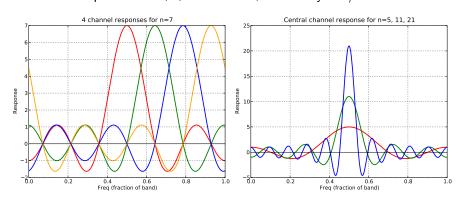
- * Here $A_n(x) = \sin n\pi x / \sin \pi x$
- * A_n is related to the sinc function
- st See appendix for Derivation of function A_n

Interpretation

* Lag correlator response is equivalent to complex correlator with additional factor

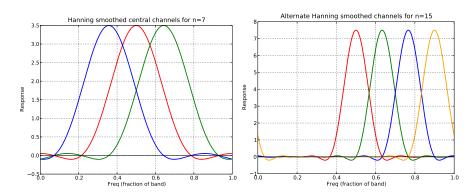
$$A_n(x) = \sin n\pi x / \sin \pi x$$

- * The function A_n serves as a filter response
- * Each output channel, l, has its own, shifted by $\Delta \nu/n$



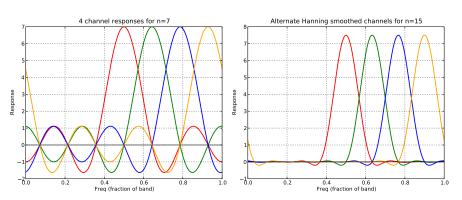
Hanning smoothing

- st Damp oscillitory spectra by smoothing with kernel $\left(rac{1}{4},rac{1}{2},rac{1}{4}
 ight)$
- * Causes wider but much more contained spectral response
 - Can throw out every other channel without loss of information
- * Effective in reducing impact of RFI



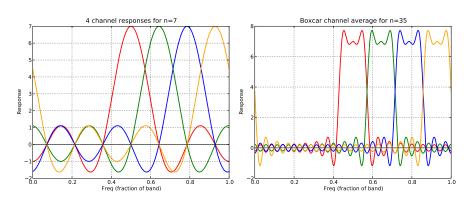
Comparison: with and without Hanning smoothing

- * Two spectra with same number of channels
- * Second one improved but comes at higher computational cost



Comparison: with and without channel averaging

- * Two spectra with same number of channels
- * Simple channel averaging does rather poor job (Gibb's effect)



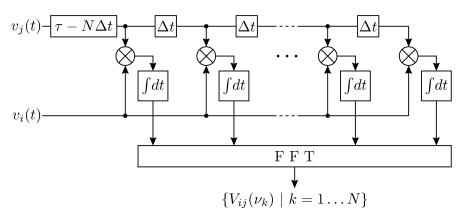
Why all the odd numbers?

- * For symmetry sake want equal number of positive and negative lags
 - o This is actually important when considering closure quantities
- * We haven't yet discussed fractional sample correction
 - \circ This allows calculation at $\tau \neq n\Delta t$
- * Thus an odd number of lags is natural to consider
- * All results generalize to even and odd numbers

Real lag correlators

- * Conceptually same as complex lag correlators
- * Need twice as many real lags for same response
 - Each lag is half as long
- * Half as many multipliers needed, but they run at twice the rate
- * Use real-to-complex Fourier transform
- * Spectral expansion of signals uses sines and cosines
- * Both real and complex lag correlators used in practice

Schematic of (real) lag correlator



* Note: FFT usually performed in software even, on hardware correlators

Examples of lag correlators

- * Mark4 (JIVE, Haystack, WACO, Bonn)
- * 1997-present (mostly retired)

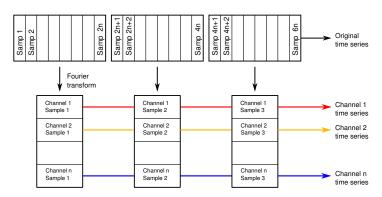
- * Old VLA Correlator
- * 1980-2008

Part 4: The FX correlator

- * Filter banks
- * Concept
 - First Fourier transform (F)
 - Then cross-multiply and accumulate (X)
- * Spectral response
- * Realization of FX correlators in practice

FFT filter banks

- * FFT incoming (real) bandwidth $\Delta \nu$ signal in blocks of 2n \circ Shown below
- * or FFT incoming (complex) bandwidth $\Delta \nu$ signal in blocks of n
- * Produce n (complex) time series, each with bandwidth $\Delta \nu/n$



FFT filter bank frequency response

* Starting from a complex sampled signal, the filter bank output is:

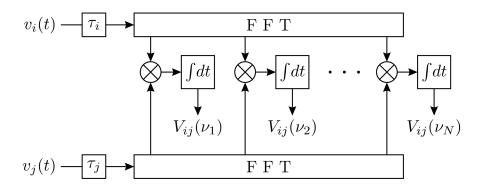
$$\tilde{w}[l] = \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{-2\pi i k l/n} w[k]$$

$$= \int_0^{\Delta \nu} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{2\pi i k (\Delta t \nu - l/n)} \tilde{w}(\nu) d\nu$$

$$= \int_0^{\Delta \nu} A_n \left(\frac{l}{n} - \nu \Delta t\right) \tilde{w}(\nu) d\nu$$

- * Note symmetric summation; through universal relabeling of samples by 1/2 sample, an even number of samples can be accommodated.
 - Not possible in lag case because the parameter was the lag itself.
 - The process is equivalent to a *shifted FFT*

Schematic of FX correlator



FX correlator frequency response

* The visibility is computed as

$$\tilde{V}_{ij}[l] = \langle \tilde{w}_i[l]^* \, \tilde{w}_j[l] \rangle
= \int_0^{\Delta \nu} \left[A_n \left(\frac{l}{n} - \nu \Delta t \right) \right]^2 \, \tilde{w}_i(\nu)^* \, \tilde{w}_j(\nu) \, d\nu$$

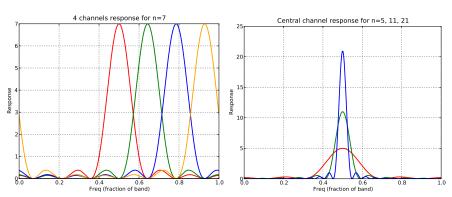
- st Similar to lag correlator response but with extra factor of $A_n()$
 - Each filterbank contributes one factor

FX correlator frequency response

* Each channel's response is similar to that of the ${\rm sinc}^2$ function:

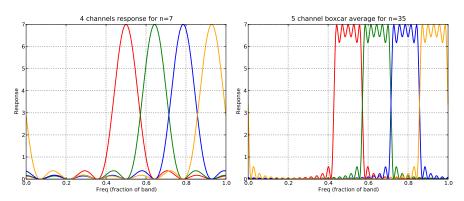
$$A_n(x)^2 = \left(\sin n\pi x / \sin \pi x\right)^2$$

* Generally better than lag corretor output but worse than Hanning smoothed lag correlator output.



Comparison: with and without channel averaging

- * Two spectra with same number of channels
- * Simple channel averaging
- * Neighboring channels fairly well isolated
- * Peak sidelobes still rather high



Examples of FX correlators

- * VLBA hardware correlator
- * 1992-2009

- Most software correlators (e.g., DiFX and SFXC)
- * Not tied to particular hardware
- * DiFX can run on a Raspberry Pi!

What DiFX (Distributed FX) does

- * Decode incoming data
- * Select data (coarse time delay)
- * Fringe rotate
- * Fourier transform
- * Select sideband
- * Apply fractional delay correction
- Cross-multiply
- * Short-term accumulate
- * Long-term accumulate
- * Write visibility to disk
- * More on this at the demo tomorrow

Part 5: Fractional sample delay and fringe rotation

- * Effect of delay error
- * Fractional sample delay compensation
- * Fringe rotation

Effect of a delay error

- * Assume a broadband signal of uniform spectral density $|\tilde{w}(\nu)|=1$
- * Look at auto-correlation with a time lag of au
- * Consider one correlator channel with ideal spectral response between ν_1 and ν_2 .

$$C_{ii}(\tau) = \frac{1}{\nu_2 - \nu_1} \int_{\nu_1}^{\nu_2} d\nu \, e^{2\pi i \tau \nu} \tilde{w}(\nu)^* \tilde{w}(\nu)$$
$$= \frac{1}{\nu_2 - \nu_1} \int_{\nu_1}^{\nu_2} d\nu \, e^{2\pi i \tau \nu}$$
$$= e^{2\pi i \tau \nu_0} \frac{\sin \pi \tau \Delta \nu}{\pi \tau \Delta \nu}$$

- * Where $\nu_0 = \frac{1}{2} \left(\nu_1 + \nu_2 \right)$ is the channel center frequency
- * And $\Delta \nu = \nu_2 \nu_1$ is the channel bandwidth

Effect of a delay error

- * There are two effects:
 - \circ There is a phase shift of $2\pi\tau\nu_0$
 - o There is an amplitude reduction (decorrelation) by amount

$$\frac{\sin \pi \tau \Delta \nu}{\pi \tau \Delta \nu}$$

- * The phase error is correctable
- * The amplitude can be restored
 - But decorrelation (loss of SNR) is permanent
 - $\circ~$ This is devistating unless $\tau \ll 1/\Delta \nu$

Fractional sample compensation

- * As one observes an astronomical source, the correlator delay model, τ must change as the source moves across the sky.
- * Source motion is smooth with time.
- * Bulk delay is compensated by choosing which samples to correlate.
- * Each incoming datastream can be offset from integer sample by as much as $\pm \frac{1}{2}$ of a sample.
- * Compensation is handled differently on different correlator architectures.
- * Spectral line (multi-channel) correlators simplify life: $\Delta t \ll 1/\Delta \nu$ in most cases so effective delay error is reduced.

Fringe rotation

- Essentially the time-dependent fractional sample compensation
- * Various possible places to implement:
 - At end of each visibility spectrum calculation (as phase gradient)
 - During accumulation, after each FFT (as phase gradient; FX-only)
 - In time domain, directly on each sample (sample phase rotation)
- * Magnitude depends on frequency, not bandwidth!
- * Remember! Want to keep phase change well under 1 radian over any averaging period.

Post-integration fringe rotation

- * The least costly (in terms of operations)
- * Phase applied to visibility spectrum (part of fractional sample corr.)

$$V_{12}(\tau,\nu) = e^{-2\pi i \nu \Delta \tau} V_{12}([\tau],\nu)$$

- \ast Where $[\tau]$ is the delay corresponding to the nearest integer number of samples, and
- * $\Delta \tau = \tau [\tau]$ is the fractional sample being compensated.
- * This is valid when $T\dot{\tau}\nu\ll 1$
- * Example: b=1 km equatorial baseline at $\nu=1$ GHz at zenith passage
 - Phase as function of time: $\phi(t) = 2\pi\nu b \sin(2\pi t/86400)/c$
 - \circ The fringe rate, $\dot{\phi}(t)=4\pi^2\nu b\cos(2\pi t/86400)/(86400c)$, peaks at 1.5 rad/sec.
 - \circ Thus post-integration fringe rotation is valid for $T\ll 0.6~{
 m sec}$
- * Often done on sub-integration basis.

Post-FFT fringe rotation (FX-only)

- * With higher fringe rates, fringe rotation must be done on shorter timescales.
- * FX correlators expose the spectrum after each FFT.
- * Typical continuum correlator output has frequency resolution of 0.25 MHz, implying FFT timescales of 4μ s.
- * On a 8611 km baseline (longest VLBA), this is OK for $\nu \ll 20$ GHz.
- * Use with care on continent-scale VLBI arrays!

Time-domain fringe rotation

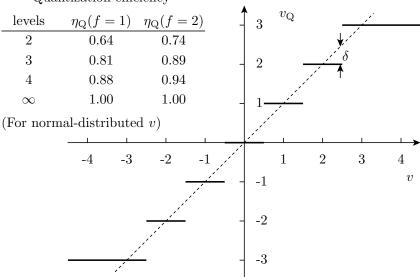
- * This is the most common form of fringe rotation used by VLBI
- * Simply multiply each sample by $e^{2\pi i \nu_0 \Delta \tau}$ before correlating
- * This makes for a complex-valued signal
 - But it is not an analytic signal!
- Note! This technique only works well for small fractional bandwidths
 - Same phase applied to all frequencies
 - \circ Results in decorrelation near band edges by $\mathrm{sinc}\left(\pi\frac{\Delta\nu}{\nu_0}\right)$
 - Worst cast at VLBA: 128 MHz BW centered around 1.28 GHz
 - ▶ 1.6% decorrelation at band edge
 - ▶ 0.5% decorrelation averaged over band
 - ► This is still generally acceptable
 - \circ Decorrelation grows as $\left(\frac{\Delta
 u}{
 u_0}\right)^2$

Part 6: Miscellaneous topics

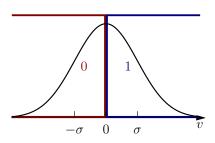
- * Quantization
- * Pulsar gating
- * Other correlator functionality
- $* \ \, \mathsf{Design} \, \, \mathsf{trade}\text{-}\mathsf{offs}$

Quantization noise

Quantization efficiency



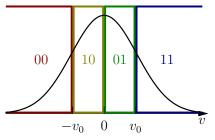
Real 2-state (1-bit) quantization



Code	Range	Value	Frac.
0	$-\infty$ to 0	$-\sqrt{2/\pi} \sigma$	50%
1	0 to ∞	$\sqrt{2/\pi} \sigma$	50%

- * Values determined so as to minimize quantization noise
- * Quantization efficiency $\eta_Q=64\%$
- * Effective number of bits, ENOB = 1

Real 4-state (2-bit) quantization



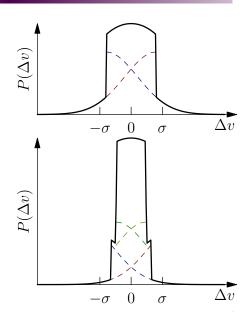
Code	Range	Value	Frac.
00	$-\infty$ to $-v_0$	$-\alpha R$	17%
10	$-v_0$ to 0	$-\alpha$	33%
01	0 to v_0	α	33%
11	v_0 to ∞	αR	17%

- * Optimal values: $v_0 = 0.96\sigma$; $R = 3.3359 \longrightarrow \eta_Q = 88\%$
- * ENOB = 1.92
- * $\alpha = 0.4780\,\sigma$ determined so as to minimize quantization noise

Note: Different conventions for the codes exist (e.g., Mark5B, VDIF)

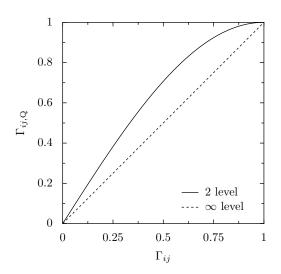
Quantization noise distribution

- * Quantization noise is non-Gaussian
- * Approaches uniform distribution
- Distributions for 1-bit and 2-bit sampling shown



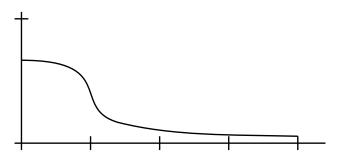
Quantization correction

- * At low correlation, quantization *increases* correlation
- Quantization causes predictable non-linearity at high correlation
- * Linear correction is easy; full correction is complicated ...



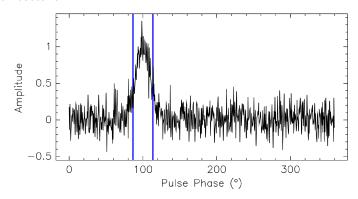
Quantization in the spectral domain

- * 1-bit quantization is extreme case of harmonic distortion
- * Power gets scattered into harmonics
- * Oversampling allows partial discrimination of unwanted harmonics
 - Increases signal to noise
 - At a substantial data transmission cost
 - Very quickly diminishing returns; better to use more bits



Pulsar gating

- * Pulsars emit regular pulses with small duty cycle
- * Period in range 1 ms to 8 s; usually $\Delta t \ll P_{\mathrm{pulsar}} < T$
- * Blanking during off-pulse improves sensitivity
- Propagation delay is frequency dependent: best done on FX architecture



Other correlator functionality

- * Pulse cal extraction
- * Switched power extraction
- * Data weights
- * Multiple phase centers
- * Spectral zooming
- * Band matching
- * Overlapped FFTs

Trade-offs: hardware vs. software

- * Hardware advantages
 - \circ Can be 10-100imes faster
 - \circ Can be $10\text{-}100\times$ more power efficient
 - Predictable operations once commissioned (usually)
 - Guaranteed real-time performance
- * Software advantages
 - Short development timescales
 - COTS Hardware: cost effective
 - o Generally more flexible
 - Extensible, even after deployed
- * GPU-based correlators straddle the two
 - Higher compute density than CPUs
 - Less flexibility than CPUs
 - More difficult development than CPUs

Trade-offs: lag or FX architecture?

- * Lag (XF) advantages
 - Can implement weights more precisely
 - o Individual operations can be performed with small word sizes
 - Access to uncorrupted lag spectrum
 - ► Improved quantization correction
- * FX advantages
 - Many fewer operations (increasingly so with larger spectra)
 - Improved native spectral response
 - Access to frequency domain on short timescales
 - ► Zoom bands and band-matching
 - ► More effective pulsar gating
 - ► Sub-integration RFI characterization

Spectral response and delay window duality

Processing	Spectral response	Delay window
lag		
. ,,,		
lag w/Hanning		
	\bigwedge	
FX		
FX w/boxcar		

- * Related by Fourier transform
- * Must take into consideration when calculating fringe SNR!

Hybrid correlators

- * Example: Jansky VLA's WIDAR correlator
- * 2008-present
- * "Filter-bank XF" architecture
- * Filterbank forms complex-valued sub-bands
- * Each sub-band feeds a complex lag correlator

Left: WIDAR during construction Right: WIDAR baseline board

Appendices

- * Trigonometric identities
- * Symmetric power series sum
- * Correlation of cosine and sine functions
- * Correlation of Gaussian pulses

Trigonometric identities

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

$$\cos x \sin y = \frac{1}{2} [\sin(x - y) + \sin(x + y)]$$

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x - y)]$$

$$e^{ix} = \cos x + i \sin x$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

Symmetric power series sum

$$A_{2m+1}(x) = \sum_{k=-m}^{m} e^{-i2\pi xk}$$

$$= \sum_{k=-m}^{\infty} e^{-i2\pi xk} - \sum_{k=m+1}^{\infty} e^{-i2\pi xk}$$

$$= \left(e^{i(2m)\pi x} - e^{-i(2m-2)\pi x}\right) \sum_{k=0}^{\infty} e^{-i2\pi xk}$$

$$= \left(e^{i(2m)\pi x} - e^{-i(2m-2)\pi x}\right) \frac{1}{1 - e^{-i2\pi xm}}$$

$$= \frac{e^{i(2m+1)\pi x} - e^{-i(2m+1)\pi x}}{e^{i\pi xm} - e^{-i\pi xm}}$$

$$= \frac{\sin(2m+1)\pi x}{\sin \pi x} \longrightarrow A_n(x) = \frac{\sin n\pi x}{\sin \pi x}$$

Note: in the limit that $n \to \infty$, $A_n(x) \to \delta(x)$, $\frac{A_n(x/n)}{n} \to \operatorname{sinc} 2\pi x$.

Correlation of cosine and sine functions w/ real correlator

$$C_{12}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \cos 2\pi t \sin 2\pi (t+\tau) dt$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \frac{1}{2} \left[-\sin 2\pi \nu \tau + \sin 2\pi \nu (2t+\tau) \right] dt$$

$$= \lim_{T \to \infty} \frac{1}{4T} \left[-t \sin 2\pi \nu \tau - \frac{1}{4\pi \nu} \cos 2\nu (2t+\tau) \right]_{-T}^{T}$$

$$= \lim_{T \to \infty} -\frac{1}{2} \sin 2\pi \nu \tau + \mathcal{O}\left(\frac{1}{T}\right)$$

$$= -\frac{1}{2} \sin 2\pi \nu \tau$$

Correlation of Gaussian pulses

$$\Gamma_{ij}(\tau) = \frac{\int_{-\infty}^{\infty} e^{-t^2/2} e^{-(t-t_0+\tau)^2/2} dt}{\int_{-\infty}^{\infty} e^{-t^2} dt}$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(t+t_0/2-\tau/2)^2/2} e^{-(t-t_0/2+\tau/2)^2/2} dt$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} e^{-(\tau-t_0)^2/2} dt$$

$$= e^{-(\tau-t_0)^2/2}$$

Note use of Gaussian integral identity (twice):

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$