Correlators

Walter Brisken

NRAO

2019 Mar 15

Introduction

- * I will explain how correlator products (visibilities) are formed
- \ast I will explain the fringe fit process and creation of total delays
- * I cover several Digital Signal Processing topics
- * This is a very mathematical subject
 - Some calculation details are in the appendix
 - $\circ\,$ Several signal processing concepts are explained along the way
 - Slow me down and ask questions as necessary!

- * Delay model calculation already covered
- * Making use of total delay will be covered in later talks

Why learn about correlators?

- * Understand interferometry data products
- * Design interferometric experiments properly
- * Implement or improve upon a correlator
- * To operate a correlator
- * To achieve an enhanced state of enlightenment

- * Radio antennas/receivers measure electric field vectors
- * These are handed to the correlator as voltage time series
- * Here we are concerned with cross correlations of these
- * 2 (or more) antennas and a correlator form a radio interferometer

- * Definition
- * Correlation of functions
- * Correlation of sampled data
- * Noise and sensitivity
- * The complex-valued visibility

Formal definition

Any implementation the cross-correlation function,

$$C_{ij}(\tau) = \operatorname{Corr}[v_i, v_j] = \langle v_i(t)v_j(t+\tau) \rangle$$

given two real-valued functions, $v_i(t)$ and $v_j(t)$.

Colloquial definition

The device that calculates the above for a VLBI (or other astronomical) observation across 2 or more antennas, each with 1 or 2 polarization components, 1 or more spectral windows with use of delay model functions $\tau_{ij}(t)$ appropriate for the source being studied. The VLBI correlator may also extract pulse cal tones and apply certain calibration to data.

Schematic

- * The calculatd value, $C_{ij}(\tau)$, is a statistical quantity
 - Must average over many (independent) samples to be meaningful
 - $\circ~$ For a bandwidth of $\Delta\nu,$ one independent sample every $\Delta t=1/2\Delta\nu.$
- * Calculation is generally explicitly time-bounded
- * Usually is computed on uniformly sampled data:

$$C_{ij}[k] = \frac{1}{N} \sum_{l=1}^{N} v_i[l] v_j[l+k]$$

with integer k and l

 $\ast \, \, k \, \, {\rm or} \, \, \tau \, \, {\rm is} \, \, {\rm called} \, \, {\rm the} \, \, {\it lag}$

Example 1

- * Use signals $v_1(t) = \sin 2\pi\nu t$ and $v_2(t) = \cos 2\pi\nu t$.
- * Take limiting case as time range extends infinitely.

$$C_{12}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \cos 2\pi\nu t \sin 2\pi\nu (t+\tau) dt$$
$$= -\frac{1}{2} \sin 2\pi\nu \tau$$

- * Narrow-band signals have large support over τ .
- * Sums of pure tones (as here) have support even as $| au| o \infty$.
- * See appendix for detailed derivation.

Normalized correlation coefficient

* Often one is interested in a normalized value (independent of scale)

$$\Gamma_{ij}(\tau) = \frac{\langle v_i(t)v_j(t+\tau)\rangle}{\sqrt{\langle v_i(t)^2\rangle \langle v_j(t+\tau)^2\rangle}}$$

- * The denominator is the geometric mean of the two signals' autocorrelations
- * Γ_{ij} is a measure of how similar the two signals are $\circ \ \Gamma_{ij}(\tau) = \pm 1$ if and only if $v_i(t) \propto \pm v_j(t+\tau)$. $\circ \$ Otherwise $|\Gamma_{ij}(\tau)| < 1$
- * For $v_1(t) = \sin 2\pi\nu t$ and $v_2(t) = \cos 2\pi\nu t$:

$$\Gamma_{ij}(\tau) = -\sin 2\pi\nu\tau$$

* Thus the cosine function is the same as the sine function with a $n-1/4~{\rm period}$ shift.

Example 2

- * Cross-correlate $v_1(t) = e^{-t^2/2}$ against $v_2(t) = e^{-(t-t_0)^2/2}$
- * For simplicity make use of $v_1(t) = v_2(t+t_0)$:

$$\Gamma_{12}(\tau) = \frac{\int_{-\infty}^{\infty} v_1(t) v_2(t+\tau) dt}{\int_{-\infty}^{\infty} v_1(t)^2 dt} \\ = e^{-(\tau-t_0)^2/4}$$

- * Result could be predicted without grungy math:
 - Correlation of time symmetric signals is equivalent to convolution
 - Convolution of two Gaussians is a wider Gaussian (sum in quadrature)
 - $\circ~$ Signals are the same when $\tau=t_0$
- * More complete derivation in appendix

Example 2 (continued)

Correlation of sampled data

- * Sampled data can be treated in similar manner as a continuous function
- * Replace integrals by sums
- $\ast\,$ Assume here that sampled data streams both be uniformly sampled at same interval, Δt
- * Sampled signals must be band-limited with $\Delta \nu \leq 1/2\Delta t$ (Nyquist sampling theorem)
- * Note: sampled does not imply quantized; ignore quantization here
- * Given $v_i[l]$ and $v_j[l]$, the corresponding quantities are:

$$C_{ij}[k] = \frac{1}{N} \sum_{l=1}^{N} v_i[l] v_j[l+k]$$

$$\Gamma_{ij}[k] = \frac{\sum_{l=1}^{N} v_i[l] v_j[l+k]}{\sqrt{\sum_{l=1}^{N} v_i[l]^2} \sqrt{\sum_{l=1}^{N} v_j[l+k]^2}}$$

Example 3: Seismology

Image from Einstein Telescope design study document, 2011

Sampling band-limited signal: original signal

Capture signal every unit interval

Retain only samples

18/104

Naive signal reconstruction

19/104

The interpolation function for 1^{st} Nyquist zone (sinc)

^{20/104}

Properly interpolated function

Comparison of original and reconstructed signals

22/104

- * Take 2 sampled signals, $\mathfrak{g}_1[l]$ and $\mathfrak{g}_2[l]$, where
 - $\circ\;$ Each $\mathfrak{g}_i[k]$ is drawn from a zero mean, unit norm Normal distribution
 - $\circ~\langle \mathfrak{g}_i
 angle = 0$, $\left< \mathfrak{g}_i^2 \right> = 1$ (which implies $C_{ij} = \Gamma_{ij}$)
 - $\circ~\langle \mathfrak{g}_{j}\mathfrak{g}_{j}\rangle = \delta_{ij}$ (defines uncorrelated noise)
- * The expectation value of the correlation function vanishes

$$C_{12}[k] = \frac{1}{N} \sum_{i=1}^{N} \mathfrak{g}_1[l] \mathfrak{g}_2[l+k] = 0$$

* But its RMS does not

$$\sigma_{C_{12}[k]} = \frac{1}{\sqrt{N}}$$

* This is the basis for calculating interferometer sensitivity (see appendix)

The (optical) double slit experiment

- * The film at the image plane of a double slit is a correlator!
- * $\tau = \tau_2 \tau_1$ is the path length difference
- * Monochrome signal hits mask $v(t) = \cos 2\pi\nu t$
- * Signals at image:

$$v_1(t) = \cos 2\pi\nu(t-\tau_1)$$

 $v_2(t) = \cos 2\pi\nu(t-\tau_2)$

* Intensity at image:

$$I(\tau) \propto \left\langle (v_1(t) + v_2(t))^2 \right\rangle$$

= $1 + \cos 2\pi\nu\tau$

- * This is an additive correlator
- * The constant term is the total power
- * The brightness ripples are *fringes*

Correlation of quasi-monochromatic signals

- * As seen before cross correlation of two equal-frequency signals gives sinusoidal response with respect to τ .
- * Sinusoids have two free parameters: amplitude and phase.
- * Seems silly to need more than two measurements to completely characterize correlator response.
- * Solution: measure two lags, separated by 90 degrees of phase!

$$C_{ij}(\tau) = C_{ij}(0)\cos 2\pi\nu\tau + C_{ij}(1/4\nu)\sin 2\pi\nu\tau$$

* For convenience, bundle into a single complex number

$$V_{ij} = C_{ij}(0) + iC_{ij}(1/4\nu)$$

* This is proportional to the familiar visibility. And then

$$V_{ij}(\tau) = \operatorname{Re}\left(V_{ij}e^{-2\pi i\nu\tau}\right)$$

- * The complex correlator
- * The Hilbert transform
- * Analytic signals
- * Complex sampling

Schematic of complex correlator

 $V_{ij}(\tau) = \langle v_i(t)v_j(t+\tau) \rangle + i \langle v_i(t)\mathcal{H}[v_j](t+\tau) \rangle$

 $\ast\,$ Given a real-valued signal v(t), define analytic signal

$$w(t) = v(t) + i\mathcal{H}[v(t)]$$

 $\ast~$ Here ${\cal H}$ is the Hilbert transform

$$\circ \ \mathcal{H}[v(t)] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{v(s)}{t-s} ds$$

$$\circ \cos \rightarrow \sin$$
 and $\sin \rightarrow -\cos$

- $\circ~\mathcal{H}[\mathcal{H}[v(t)]] = -v(t)$ (the operation is invertable)
- * Analytic signals are mathematical tools
 - Allows complex multiplication
 - Simplifies Fourier transforms
 - Simplifies fringe rotation
- * Remember: $\operatorname{Im}(w(t))$ is not physical
- * See https://en.wikipedia.org/wiki/Analytic_signal for a good discussion

Hilbert transform example: amplitude modulated signal

Compute Hilbert transform (blue + i green is analytic)

Reconstruct envelope (sum blue & green in quadrature)

Analytic signal properties

* Energy content is double:

$$\int w(t)^* w(t) dt = 2 \int v(t)^2$$

* Fourier transform has no negative frequency components:

$$\mathcal{F}[w(t)](\nu) = 2H(\nu)\mathcal{F}[v(t)](\nu)$$

where the Heaviside step function is:

Making complex sampled data from real sampled data

- * Start with a real sampled signal, v[k]
- * Can compute the sampled equivalent of an analytic signal using discrete Hilbert transform

$$\mathcal{H}(v)[k] = \begin{cases} \frac{2}{\pi} \sum_{n \text{ odd}} \frac{v[n]}{k-n} & k \text{ even} \\ \frac{2}{\pi} \sum_{n \text{ even}} \frac{v[n]}{k-n} & k \text{ odd} \end{cases}$$

- * Resultant signal, $v[k] + i\mathcal{H}(v)[k]$, carries duplicate information
- * Can drop alternate samples to define:

$$w[k] = v[2k] + i\mathcal{H}(v)[2k]$$

* Note that sample rate simply is inverse bandwidth: $\Delta t = 1/\Delta \nu$ \circ Clock rate of digital electronics can be halved!

- * Make use of the power of complex numbers
- * Note use of complex conjugation: *

$$Corr[w_i, w_j] \equiv \langle w_i^* w_j \rangle$$

= $\langle v_i v_j \rangle + i \langle v_i \mathcal{H}[v_j] \rangle - i \langle \mathcal{H}[v_i] v_j \rangle + \langle \mathcal{H}[v_i] \mathcal{H}[v_j] \rangle$
= $2 \langle v_i v_j \rangle + 2i \langle v_i \mathcal{H}[v_j] \rangle$
= $2V_{ij}$

- * The above equation holds for continuous or sampled signals
- * Equality of the second and third expressions can be shown through spectral analysis

Spectral decomposition of signals

* A band-limited signal can be expressed analytically as

$$w(t) = \int_0^{\Delta \nu} e^{2\pi i t \nu} \, \tilde{w}(\nu) \, d\nu$$

- * Where $\tilde{w}(\nu)^* \tilde{w}(\nu)$ is proportional to the spectral power density of the signal at frequency ν .
- * Nyquist sampling simply captures this each $\Delta t = 1/\Delta \nu$:

$$w[k] = \int_0^{\Delta \nu} e^{2\pi i k \Delta t \nu} \, \tilde{w}(\nu) \, d\nu$$

* The correlation function can be expressed as integral over frequency rather than over time:

$$V_{ij}(\tau) = \int_{\nu_1}^{\nu_2} e^{2\pi i\nu\tau} \,\tilde{w}_i(\nu)^* \,\tilde{w}_j(\nu) \,d\nu$$

- * Concept
 - $\,\circ\,$ First cross-multiply and accumulate (X)
 - \circ Then Fourier transform (F)
- * Spectral response
- * Realization of lag correlators in practice
- * Examples of lag correlators
- * Fourier transforming a time series leads to its spectrum
- $* V_{ij}(au)$ is a time series in au
- * What if we discrete Fourier transform it?
- $\ast\,$ Assume n lags, each spaced by the sample rate, Δt
- * V_{ij} is complex-valued, so total bandwidth is $\Delta
 u = 1/\Delta t$

$$\tilde{V}_{ij}[l] \equiv \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{-2\pi i k l/n} V_{ij}[k]$$
$$= \int_0^{\Delta \nu} A_n \left(\frac{l}{n} - \nu \Delta t\right) \tilde{w}_i(\nu)^* \tilde{w}_j(\nu) d\nu$$

- * Where did this come from? See appendix for details.
- * What does it mean?

Í

Interpretation

* Lag correlator response is equivalent to complex correlator with additional factor

$$A_n(x) = \sin n\pi x / \sin \pi x$$

- * The function A_n serves as a filter response
- * Each output channel, l, has its own filter, shifted by $\Delta
 u/n$

Hanning smoothing

- * Damp oscillitory spectra by smoothing with kernel $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$
- * Causes wider but much more contained spectral response
 - $\circ~$ Can throw out every other channel without loss of information
- * Effective in reducing impact of RFI

Comparison: with and without Hanning smoothing

- * Two spectra with same number of channels
- * Second one improved but comes at higher computational cost
- * Implications for RFI immunity?

Comparison: with and without channel averaging

- * Two spectra with same number of channels
- * Simple channel averaging does rather poor job (Gibb's effect)

- For symmetry sake want equal number of positive and negative lags
 This is actually important when considering *closure quantities*
- * We haven't yet discussed fractional sample correction
 - $\circ~$ This allows calculation at $\tau \neq n \Delta t$
- * Thus an odd number of lags is natural to consider
- * All results generalize to even and odd numbers

- * Conceptually same as complex lag correlators
- * Need twice as many real lags for same response
 - Each lag is half as long (duration of a real sample rather than analytic complex sample)
- \ast Half as many multipliers needed, but they run at twice the rate
- * Use real-to-complex Fourier transform
- * Spectral expansion of signals uses sines and cosines
- * Both real and complex lag correlators used in practice

Schematic of (real) lag correlator

* Note: FFT usually performed in software even, on hardware correlators

Examples of lag correlators

- * Mark4 (JIVE, Haystack, WACO, Bonn)
- * 1997-present (mostly retired)

- * Old VLA Correlator
- * 1980-2008

- * Filter banks
- * Concept
 - First Fourier transform (F)
 - \circ Then cross-multiply and accumulate (X)
- * Spectral response
- * Realization of FX correlators in practice

FFT filter banks

- * FFT incoming bandwidth $\Delta \nu$ real signal in blocks of 2n \circ Shown below
- * or FFT incoming bandwidth $\Delta
 u$ complex signal in blocks of n
- * Produce n complex time series, each with bandwidth $\Delta
 u/n$

FFT filter bank frequency response

* Starting from a complex sampled signal, the filter bank output is:

$$\begin{split} \tilde{w}[l] &= \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{-2\pi i k l/n} w[k] \\ &= \int_{0}^{\Delta \nu} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{2\pi i k (\Delta t \nu - l/n)} \tilde{w}(\nu) d\nu \\ &= \int_{0}^{\Delta \nu} A_n \left(\frac{l}{n} - \nu \Delta t\right) \tilde{w}(\nu) d\nu \end{split}$$

- * Note symmetric summation; through universal relabeling of samples by 1/2 sample, an even number of samples can be accomodated.
 - Not possible in lag case because the parameter was the lag itself.
 - $\circ~$ The process is equivalent to a shifted FFT

* The visibility is computed as

$$\begin{split} \tilde{V}_{ij}[l] &= \langle \tilde{w}_i[l]^* \, \tilde{w}_j[l] \rangle \\ &= \int_0^{\Delta \nu} \left[A_n \left(\frac{l}{n} - \nu \Delta t \right) \right]^2 \, \tilde{w}_i(\nu)^* \, \tilde{w}_j(\nu) \, d\nu \end{split}$$

* Similar to lag correlator response but with extra factor of $A_n()$ \circ Each filterbank contributes one factor

FX correlator frequency response

 $\ast\,$ Each channel's response is similar to that of the ${\rm sinc}^2$ function:

$$A_n(x)^2 = \left(\sin n\pi x / \sin \pi x\right)^2$$

* Generally better than lag corretor output but worse than Hanning smoothed lag correlator output.

Comparison: with and without channel averaging

- * Two spectra with same number of channels
- * Simple channel averaging
- * Neighboring channels fairly well isolated
- * Peak sidelobes still rather high

Examples of FX correlators

* VLBA hardware correlator* 1992-2009

- * Most software correlators (e.g., DiFX and SFXC)
- * Not tied to particular hardware
- * DiFX can run on a Raspberry Pi!

What information is needed to correlate?

Time for you to brainstorm...

What information is needed to correlate?

- * Start and stop times
- * Frequencies of observation + bandwidth
- * Location of the data
- * Format of the data
- * Location of antennas
- * Coordinates of the source
- * Clock offsets
- * Correlator parameters: time and spectral resolution

Part 5: Fractional sample delay and fringe rotation

- * Effect of delay error
- * Fractional sample delay compensation
- \ast Fringe rotation

- * Assume a broadband signal of uniform spectral density $|\tilde{w}(\nu)| = 1$
- * Look at auto-correlation with a time lag of au
- * Consider one correlator channel with ideal spectral response between ν_1 and ν_2 .

$$C_{ii}(\tau) = \frac{1}{\nu_2 - \nu_1} \int_{\nu_1}^{\nu_2} d\nu \, e^{-2\pi i \tau \nu} \tilde{w}_i(\nu)^* \tilde{w}_i(\nu)$$

$$= \frac{1}{\nu_2 - \nu_1} \int_{\nu_1}^{\nu_2} d\nu \, e^{-2\pi i \tau \nu}$$

$$= e^{-2\pi i \tau \nu_0} \frac{\sin \pi \tau \Delta \nu}{\pi \tau \Delta \nu}$$

* Where $u_0 = rac{1}{2} \left(
u_1 +
u_2
ight)$ is the channel center frequency

* And $\Delta
u =
u_2 -
u_1$ is the channel bandwidth

- * There are two effects:
 - $\circ~$ There is a phase shift of $2\pi\tau\nu_0$
 - $\circ\,$ There is an amplitude reduction (decorrelation) by amount

$$\frac{\sin \pi \tau \Delta \nu}{\pi \tau \Delta \nu}$$

- * The phase error is correctable
- * The amplitude can be restored
 - But decorrelation (loss of SNR) is permanent
 - $\circ~$ This is devistating unless $\tau \ll 1/\Delta \nu$
- * Remember these effects for when we discuss fringe fitting...

- $*\,$ As one observes an astronomical source, the correlator delay model, τ must change as the source moves across the sky.
- * Source motion is smooth with time.
- * Bulk delay is compensated by choosing which samples to correlate.
- * Each incoming datastream can be offset from integer sample by as much as $\pm \frac{1}{2}$ of a sample.
- * Compensation is handled differently on different correlator architectures.
- * Spectral line (multi-channel) correlators simplify life: $\Delta t \ll 1/\Delta \nu$ in most cases so effective delay error is reduced.

- * Essentially the time-dependent fractional sample compensation
- * Various possible places to implement:
 - At end of each visibility spectrum calculation (as phase gradient)
 - During accumulation, after each FFT (as phase gradient; FX-only)
 - In time domain, directly on each sample (sample phase rotation)
- * Magnitude depends on frequency, not bandwidth!
- * Remember! Want to keep phase change well under 1 radian over any averaging period.

Post-integration fringe rotation

- * The least costly (in terms of operations)
- * Phase applied to visibility spectrum (part of fractional sample corr.)

$$V_{12}(\tau,\nu) = e^{-2\pi i\nu\Delta\tau} V_{12}([\tau],\nu)$$

- $\ast\,$ Where $[\tau]$ is the delay corresponding to the nearest integer number of samples, and
- * $\Delta \tau = \tau [\tau]$ is the fractional sample being compensated.
- *~ This is valid when $T \dot{\tau} \nu \ll 1$
- * Example: $b=1~{\rm km}$ equatorial baseline at $\nu=1~{\rm GHz}$ at zenith passage
 - $\circ~$ Phase as function of time: $\phi(t)=2\pi\nu b\sin(2\pi t/86400)/c$
 - $\circ~$ The fringe rate, $\dot{\phi}(t)=4\pi^2\nu b\cos(2\pi t/86400)/(86400c),$ peaks at 1.5 rad/sec.
 - $\circ~$ Thus post-integration fringe rotation is valid for $T\ll 0.6~{\rm sec}$
- * Often done on sub-integration basis.

- * With higher fringe rates, fringe rotation must be done on shorter timescales.
- * FX correlators expose the spectrum after each FFT.
- * Typical continuum correlator output has frequency resolution of 0.25 MHz, implying FFT timescales of 4μ s.
- $*\,$ On a 8611 km baseline (longest VLBA), this is OK for $\nu\ll 20$ GHz.
- * Use with care on continent-scale VLBI arrays!

- * This is the most common form of fringe rotation used by VLBI
- * Simply multiply each sample by $e^{2\pi i \nu_0 \Delta \tau}$ before correlating
- * This makes for a complex-valued signal
 - But it is not an analytic signal!
- * Note! This technique only works well for small fractional bandwidths
 - Same phase applied to all frequencies
 - $\circ\,$ Results in decorrelation near band edges by ${\rm sinc}\left(\pi\frac{\Delta\nu}{\nu_0}\right)$
 - Worst cast at VLBA: 128 MHz BW centered around 1.28 GHz
 - $\blacktriangleright~1.6\%$ decorrelation at band edge
 - \blacktriangleright 0.5% decorrelation averaged over band
 - This is still generally acceptable

 $\circ~$ Decorrelation grows as $\left(\frac{\Delta\nu}{\nu_0}\right)^2$

Part 6: The DiFX correlator

What DiFX (Distributed FX) does

- * Decode incoming data
- * Select data (coarse time delay)
- * Fringe rotate
- * Fourier transform
- * Select sideband
- * Apply fractional delay correction
- * Cross-multiply
- * Short-term accumulate
- * Long-term accumulate
- * Write visibility to disk
- * You will run DiFX at the demo tomorrow

- \ast Quantization
- * Pulsar gating
- * Other correlator functionality
- * Design trade-offs

Quantization noise

- * Values determined so as to minimize quantization noise
- * Quantization efficiency $\eta_Q = 64\%$
- * Effective number of bits, ENOB = 1

- * Optimal values: $v_0 = 0.96\sigma$; $R = 3.3359 \longrightarrow \eta_Q = 88\%$
- * ENOB = 1.92

* $\alpha = 0.4780\,\sigma$ determined so as to minimize quantization noise

Note: Different conventions for the codes exist (e.g., Mark5B, VDIF)

Quantization noise distribution

Quantization correction

- At low correlation, quantization decreases correlation
- Quantization causes predictable non-linearity at high correlation
- * Linear correction is easy; full correction is complicated ...

Quantization in the spectral domain

- * 1-bit quantization is extreme case of harmonic distortion
- * Power gets scattered into harmonics
- * Oversampling allows partial discrimination of unwanted harmonics
 - Increases signal to noise
 - $\circ~$ At a substantial data transmission cost
 - $\circ~$ Very quickly diminishing returns; better to use more bits

Pulsar gating

- * Pulsars emit regular pulses with small duty cycle
- * Period in range 1 ms to 8 s; usually $\Delta t \ll P_{
 m pulsar} < T$
- * Blanking during off-pulse improves sensitivity
- * Propagation delay is frequency dependent: best done on FX architecture

- * Pulse cal extraction
- * Switched power extraction
- * Data weights
- * Multiple phase centers
- * Spectral zooming
- * Band matching
- * Overlapped FFTs

- * Hardware advantages
 - $\circ~$ Can be 10-100 $\times~$ faster
 - $\circ~$ Can be 10-100 $\times~$ more power efficient
 - Predictable operations once commissioned (usually)
 - Guaranteed real-time performance
- * Software advantages
 - Short development timescales
 - COTS Hardware: cost effective
 - Generally more flexible
 - $\circ~$ Extensible, even after deployed
- * GPU-based correlators straddle the two
 - Higher compute density than CPUs
 - Less flexibility than CPUs
 - $\circ~$ More difficult development than CPUs

Trade-offs: lag or FX architecture?

* Lag (XF) advantages

- Can implement weights more precisely
- $\circ~$ Individual operations can be performed with small word sizes
- $\circ~$ Access to uncorrupted lag spectrum
 - Improved quantization correction
- * FX advantages
 - Many fewer operations (increasingly so with larger spectra)
 - Improved native spectral response
 - $\circ~$ Access to frequency domain on short timescales
 - Zoom bands and band-matching
 - More effective pulsar gating
 - ► Sub-integration RFI characterization

Spectral response and delay window duality

- * Related by Fourier transform
- * Must take into consideration when calculating fringe SNR!

- * Example: Jansky VLA's WIDAR correlator
- * 2008-present
- * "Filter-bank XF" architecture
- * Filterbank forms complex-valued sub-bands
- * Each sub-band feeds a complex lag correlator

Left: WIDAR during construction

Right: WIDAR baseline board

- * 1- or 2-bit quantization?
- * What spectral resolution (or number of lags) is needed?
- * What time resolution is needed?
- * Do I need to generate all polarization products?

- * 1-bit sampling
 - $\circ~$ Quantization efficiency $\eta_Q=0.636$
 - Simplest to implement
- * 2-bit sampling
 - $\circ \ \eta_Q = 0.882$
 - $\circ \ \eta_Q/\sqrt{2} = 0.624$
 - $\circ~$ Slightly lower sensitivity at fixed bitrate
 - $\circ~$ Quantization correction more linear
 - Improved performance in RFI environment
- * Are there better quantization schemes? Yes...
- * Why can 1- and 2-bit quantization work?
 - $\circ~$ Absolute amplitude restored with total power measurements
 - $\circ~$ The statistics of correlation are what matter

- * Must obey frequency-time resolution product $\delta \nu \Delta t > 1$
 - Otherwise you are not correlating independent samples
 - $\circ~$ Very rarely is this a limitation
- * At low frequency RFI excision is better with more channels; can throw out affected data
 - $\circ~$ Usually this means $\delta\nu\ll\Delta\nu$
- $*\,$ To accommodate typical clock uncertainties, open up the delay window to at least $\pm 2\mu {\rm s}$
 - $\circ~$ Implies spectral resolution of 0.25 MHz or better
- * Number of (real) lags to accomplish is simply $2\delta
 u/\Delta
 u$

- $\ast\,$ Time resolution, $\Delta t=$ accumulation period
- * Δt should be smaller than timechange of correlator statistics
 - $\circ~$ Atmospheric / ionospheric pathlength changes
 - $\circ\,$ Delay model not accurate (antenna or source position error)
 - ► Residual rates usually measured in mHz or 10s of mHz
 - RFI environment
 - $\circ~$ Source structure or spectrum change (e.g., pulsars)
- * For most cm-wave VLBI, including most geodetic processing 1 or 2 seconds is fine
- * For mm-wave VLBI and space VLBI, smaller number is usually needed

Should I correlate all polarization products?

- * It depends
- * Generally no harm in doing so, but increases computational load and output data size
- * Many times not possible (e.g., only one polarization recorded)
- * Are polarizations linear?
 - Probably; polarization basis rotates on sky differently at each antenna
 - $\circ~$ Not required for array of equatorial mounted antennas
- * Are there mixed linear and circular systems?
 - $\circ\,$ Yes, otherwise you will reduce your sensitivity on some baselines

- * The most primitive analysis step after correlation
- * Data: time series of visibility spectra
 - For a single source
 - $\circ~$ From within a single common spectral window
 - $\circ~$ For a particular polarization product
 - $\circ~$ Over a short enough time to prevent atmospheric decorrelation
 - $\circ~$ Over a long enough time to achieve sensitivity requirements
- * Remember: consequence of incorrect delay model:

$$\Delta\phi(\nu) = 2\pi\tau\nu$$

where $\boldsymbol{\tau}$ here is interpreted as the delay error

- $\ast\,$ Residual phase, $\Delta\phi,$ is proportional to frequency
- * Delay error cause: antenna/source positions, clock error, atmosphere

Delays

* Phase delay

$$D_{\phi} = -\frac{1}{2\pi} \frac{\phi}{\nu}$$

* Group delay

$$D_G = -\frac{1}{2\pi} \frac{d\phi}{d\nu}$$

- * In non-dispersive media (e.g., vacuum) these are equal
- * In dispersive media (e.g., ionosphere) they differ
- * Group delay is the direct observable of VLBI observations
- $\ast\,$ Phase delay suffers from 2π ambiguities

Rates

* Phase rate

$$R_{\phi} = \frac{1}{2\pi} \frac{d\phi}{dt}$$

* Delay rate

$$R_D = \frac{1}{2\pi\nu} \frac{d\phi}{dt}$$

- * The two quantities are easily and unambiguously convertable
- * Fringe fitting naturally produces phase rate

Example data

Frequency (spans 256 MHz)

- $\ast\,$ Two adjacent 128 MHz bands on HN-LA baseline at 4.8 GHz
- $\ast\,$ By eye: approx 5.5 turns of phase across 256 MHz
- $\rightarrow D_G \sim 5.5/256 \text{MHz} = 21.5 \text{ns}$
 - * AIPS FRING result:
- $\longrightarrow D_G = 21.7 \text{ns} \ R_{\phi} = -0.6 \text{mHz} \ R_D = -1.3 \times 10^{-13} \text{sec/sec}$

- * Observe sufficiently bright, sufficiently point-like source
- * Antennas' bandpass response relatively phase flat
- * During solution interval delay error evolves linearly in time
- * Then phase can be expressed as:

$$\phi(\nu, t) = \phi_0 - 2\pi D_G \nu + 2\pi R_\phi t$$

- * Where ϕ_0 is the phase at the reference time and frequency
- * Nice linear equation with 3 parameters, right?
- $\ast\,$ Not quite: phase only measured modulo $2\pi\,$

- * 2D FFT on $\phi(\nu,t)$
 - Maybe oversampled
- * Identify peak valued pixel
- * Centroid the peak $\longrightarrow (D_G, R_{\phi}, \phi_0)$ estimate
- * Subtract $\phi_0 2\pi D_G \nu + 2\pi R_{\phi} t$ estimate from phases
 - $\circ\,$ Phases now all close to zero; 2π ambiguities less important
- * Perform least-squares fit to these residuals
- * Add fit values to estimates

Example data (corrected)

Frequency (spans 256 MHz)

- * Remaining phase ripple due to antenna bandpass
- * Note increased phase noise near band edges

- * No FFT peaks \longrightarrow no solution
- $* \ \, \mathsf{Multiple} \ \, \mathsf{FFT} \ \, \mathsf{peaks} \longrightarrow$
- * Aliased fringes

Appendices

- * Trigonometric identities
- * Symmetric power series sum
- * Correlation of cosine and sine functions
- * Correlation of Gaussian pulses
- * Correlation of signals with noise
- * Interferometer sensitivity

Trigonometric identities

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

$$\cos x \sin y = \frac{1}{2} [\sin(x - y) + \sin(x + y)]$$

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x - y)]$$

$$e^{ix} = \cos x + i \sin x$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

Symmetric power series sum

$$\begin{aligned} A_{2m+1}(x) &= \sum_{k=-m}^{m} e^{-i2\pi xk} \\ &= \sum_{k=-m}^{\infty} e^{-i2\pi xk} - \sum_{k=m+1}^{\infty} e^{-i2\pi xk} \\ &= \left(e^{i(2m)\pi x} - e^{-i(2m-2)\pi x} \right) \sum_{k=0}^{\infty} e^{-i2\pi xk} \\ &= \left(e^{i(2m)\pi x} - e^{-i(2m-2)\pi x} \right) \frac{1}{1 - e^{-i2\pi xm}} \\ &= \frac{e^{i(2m+1)\pi x} - e^{-i(2m+1)\pi x}}{e^{i\pi xm} - e^{-i\pi xm}} \\ &= \frac{\sin(2m+1)\pi x}{\sin\pi x} \longrightarrow A_n(x) = \frac{\sin n\pi x}{\sin\pi x} \end{aligned}$$

in the limit that $n \to \infty$, $A_n(x) \to \delta(x)$, $\frac{A_n(x/n)}{n} \to \sin 2\pi x$.

Note:

The lag correlator in detail

$$\begin{split} \tilde{V}_{12}[l] &\equiv \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{-2\pi i k l/n} V_{12}[k] \\ &= \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} \frac{1}{N} \sum_{j=1}^{N} e^{-2\pi i k l/n} w_1[j]^* w_2[j+k] \\ &= \int_0^{\Delta \nu} d\nu_1 \int_0^{\Delta \nu} d\nu_2 \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} \frac{1}{N} \sum_{j=1}^{N} e^{-2\pi i k l/n} \\ &\times e^{2\pi i \Delta t j \nu_1} \tilde{w}_1(\nu_1)^* e^{2\pi i \Delta t (j+k) \nu_2} \tilde{w}_2(\nu_2) \end{split}$$

. . .

95/104

The lag correlator in detail ...

$$\begin{split} \tilde{V}_{12}[l] &= \int_{0}^{\Delta \nu} d\nu_{1} \int_{0}^{\Delta \nu} d\nu_{2} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{-2\pi i k \left(\frac{l}{n} - \nu_{2} \Delta t\right)} \\ &\times \frac{1}{N} \sum_{j=1}^{N} e^{2\pi i \Delta t j (\nu_{2} - \nu_{1})} \tilde{w}_{1}(\nu_{1})^{*} \tilde{w}_{2}(\nu_{2}) \\ &\sim \int_{0}^{\Delta \nu} d\nu_{1} \int_{0}^{\Delta \nu} d\nu_{2} A_{n} \left(\frac{l}{n} - \nu_{2} \Delta t\right) \delta(\nu_{2} - \nu_{1}) \tilde{w}_{1}(\nu_{1})^{*} \tilde{w}_{2}(\nu_{2}) \\ &= \int A_{n} \left(\frac{l}{n} - \nu \Delta t\right) \tilde{w}_{1}(\nu)^{*} \tilde{w}_{2}(\nu) d\nu \end{split}$$

- * Here $A_n(x) = \sin n\pi x / \sin \pi x$
- $* A_n$ is related to the sinc function
- * See previous appendix for Derivation of function A_n

Correlation of cosine and sine functions w/ real correlator

$$C_{12}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \cos 2\pi t \sin 2\pi (t+\tau) dt$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \frac{1}{2} \left[-\sin 2\pi\nu\tau + \sin 2\pi\nu(2t+\tau) \right] dt$$

$$= \lim_{T \to \infty} \frac{1}{4T} \left[-t \sin 2\pi\nu\tau - \frac{1}{4\pi\nu} \cos 2\nu(2t+\tau) \right]_{-T}^{T}$$

$$= \lim_{T \to \infty} -\frac{1}{2} \sin 2\pi\nu\tau + \mathcal{O}\left(\frac{1}{T}\right)$$

$$= -\frac{1}{2} \sin 2\pi\nu\tau$$

Correlation of Gaussian pulses

$$\Gamma_{ij}(\tau) = \frac{\int_{-\infty}^{\infty} e^{-t^2/2} e^{-(t-t_0+\tau)^2/2} dt}{\int_{-\infty}^{\infty} e^{-t^2} dt}$$

= $\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(t+t_0/2-\tau/2)^2/2} e^{-(t-t_0/2+\tau/2)^2/2} dt$
= $\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} e^{-(\tau-t_0)^2/2} dt$
= $e^{-(\tau-t_0)^2/2}$

Note use of Gaussian integral identity (twice):

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

The interpolation function for 2^{nd} Nyquist zone $(\sin 2x - \sin x)/x$

99/104

Correlation of signals with noise (at zero delay)

* $Corr[v_i, v_j]$ is *bilinear* in its signal arguments:

$$\operatorname{Corr}[\alpha \, a + \beta \, b, \gamma \, c + \delta \, d] = \alpha \, \gamma \operatorname{Corr}[a, c] \\ + \alpha \, \delta \operatorname{Corr}[a, d] \\ + \beta \, \gamma \operatorname{Corr}[b, c] \\ + \beta \, \delta \operatorname{Corr}[b, d]$$

* A simplistic signal model for observation of a point source is

$$\begin{aligned} v_1[k] &= S[k] + N_1[k] = \sqrt{s} \, \mathfrak{g}_0[k] + \sqrt{n_1} \, \mathfrak{g}_1[k] \\ v_2[k] &= S[k] + N_2[k] = \sqrt{s} \, \mathfrak{g}_0[k] + \sqrt{n_2} \, \mathfrak{g}_2[k] \end{aligned}$$

- * Where S[k] and both $N_i[k]$ are all independent Gaussian noise streams.
- $* \mathfrak{g}_i$ are unit norm zero mean Gaussian streams.
- * For convenience, s and n_i are dimensioned as powers.

Correlation of signals with noise (at zero delay)

* Make use of bilinearity and previous relations:

$$C_{ij}[0] = \langle SS \rangle + \langle N_1S \rangle + \langle SN_2 \rangle + \langle N_1N_2 \rangle$$
$$= \frac{1}{N} \sum_{l=1}^N S[l]^2$$
$$= s$$

* And normalized correlation coefficient:

$$\Gamma_{ij}[0] = \frac{s}{\sqrt{s+n_1}\sqrt{s+n_2}}$$

* In the low signal to noise limit ($s \ll \min n_1, n_2$)

$$\Gamma_{ij}[0] = \frac{s}{\sqrt{n_1 n_2}}$$

Correlation of signals with noise (at zero delay)

* Noise does not enter the expectation value of C_{ij} , but it does the uncertainty:

$$\sigma_{C_{ij}[0]} = \sqrt{\frac{2s^2 + n_1s + sn_2 + n_1n_2}{N}}$$

- * Some messy statistics used, left as exercise to the astute reader!
- * In the low signal to noise limit

$$C_{ij}[0] = s \pm \sqrt{\frac{n_1 n_2}{N}}$$

$$\Gamma_{ij}[0] = \frac{s}{\sqrt{n_1 n_2}} \pm \frac{1}{\sqrt{N}}$$

* Exercise to reader: consider the strong signal case.

* Previous page allows one to write down the SNR for a measurement:

$$SNR = \frac{s\sqrt{N}}{\sqrt{n_1 n_2}} = \frac{s\sqrt{N}}{\sqrt{SEFD_1 SEFD_2}}$$

* Usually instead the sensitivity of the baseline is expressed:

$$\Delta S = \frac{\sqrt{\text{SEFD}_1 \text{SEFD}_2}}{\sqrt{N}} = \frac{\sqrt{\text{SEFD}_1 \text{SEFD}_2}}{\sqrt{2\Delta\nu T}}$$

- * SEFD is the System Equivalent Flux Density
 - $\circ~{\rm SEFD}=T_{\rm sys}/g$ where g is antenna gain (units of K/Jy)
 - $\circ\,$ Equals the brightness (in Jy) of a source required to double antenna noise power $(T_{\rm sys})$
 - $\circ\,$ VLBA antenna SEFD is typically 300 to 500 Jy.
- * Additional efficiency factors may apply (e.g., quantization)

* Some signals are zero outside a finite time range

 $\circ~$ Or diminish sufficiently fast such that $\lim_{T \to \infty} \int_{-T}^{T} v(t)^2 dt = C$

- * Time averages of cross- and auto-correlations $\rightarrow 0$ as $T \rightarrow \infty$
- * In such cases one can take the limit as follows:

$$\Gamma_{ij}(\tau) = \lim_{T \to \infty} \frac{\frac{1}{2T} \int_{-T}^{T} v_1(t) v_2(t+\tau) dt}{\sqrt{\frac{1}{2T} \int_{-T}^{T} v_1(t)^2 dt} \sqrt{\frac{1}{2T} \int_{-T}^{T} v_2(t+\tau)^2 dt}}$$

$$= \lim_{T \to \infty} \frac{\int_{-T}^{T} v_1(t) v_2(t+\tau) dt}{\sqrt{\int_{-T}^{T} v_1(t)^2 dt} \sqrt{\int_{-T}^{T} v_2(t+\tau)^2 dt}}$$