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Introduction

x| will explain how visibilities are formed
* | won't explain what to do with them!

o Roger will in the analysis lecture
x This is a very mathematical subject

o Rigor is balanced with simplicity
o Some calculation details are in the appendix
o Several signal processing concepts are explained along the way

o Slow me down and ask questions as necessary!
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Why learn about correlators?

Understand interferometry data products
Design interferometric experiments properly
Implement or improve upon a correlator

To operate a correlator

To achieve an enhanced state of enlightenment

86



The VLBI Context

Radio antennas/receivers measure
electric field vectors

These are handed to the correlator as
voltage time series

Here we are concerned with cross N—
correlations of these

2 (or more) antennas and a correlator
form a radio interferometer

19F 1V
L

i The
i Correlator:

<
<
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Part 1: The real correlator

x Definition

x Correlation of functions

x Correlation of sampled data
x Noise and sensitivity

*x The complex-valued visibility
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What is a cross-correlator?

Formal definition
Any implementation the cross-correlation function,

Ci; (1) = Corrlv;, v;] = (vi(t)v;(t + 7))
given two real-valued functions, v;(t) and v;(t).

Colloquial definition

The device that calculates the above for a VLBI (or other astronomical)
observation across 2 or more antennas, each with 1 or 2 polarization
components, 1 or more spectral windows with use of delay model
functions 7;;(t) appropriate for the source being studied.
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Some nuances

The calculatd value, C;;(7), is a statistic

o Must average over many (independent) samples to be
meaningful

o For a bandwidth of Av, one independent sample every
At =1/2Av.

Calculation is generally explicitly time-bounded

Usually is computed on uniformly sampled data:

1 N
NZ ’Ujl"’k

with integer k and [

k or 7 is called the lag
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Example 1

Use signals v (t) = sin 27wt and va(t) = cos 2muvt.

Take limiting case as time range extends infinitely.

1 T
Cia(r) = iplgr;oﬁ /Tcos 27t sin 27 (t + 1) dt

= 5 sin 2wvT

Narrow-band signals have large support over 7.

Sums of pure tones (as here) have support even as |7| — oo.

See appendix for detailed derivation.
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Schematic
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Normalized correlation coefficient

Often one is interested in a normalized value (independent of scale)

{vi(t)v;(t + 7))

Fi]’ T =
i V{(wi6)?) (vt +7)?)

The denominator is the geometric mean of the two signals’
autocorrelations
I';; is a measure of how similar the two signals are
o Can prove I';j(7) = %1 if and only if v;(t) o< £v;(t + 7).
o Can prove |I';;(7)] <1
For v1(t) = sin 2wvt and va(t) = cos 2mut:

Iij(7) = —sin27v7

Thus the cosine function is the same as the sine function with a
n — 1/4 period shift.
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Finite energy signals

*x Some signals are zero outside a finite time range
T

o Or diminish sufficiently fast such that lim v(t)dt = C

T—o00 -T

% Time averages of cross- and auto-correlations — 0 as T" — oo

x In such cases one can take the limit as follows:

o Sl v (va(t + 7)dt
Fij(T) = lim
oo \/2Tf rui(t th\/2Tf 7 va(t +7)2dt
fTvl vo(t + 7)dt

TS \/fTvl 2dt\/fTuQ t+ 7)2dt
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Example 2

Cross-correlate vy (t) = e~ t?/2 against vy(t) = e~ (t=t0)?/2

For simplicity make use of vy (t) = va(t + tp):
75 vi(t)va(t 4 7)dt

L5 v(t)2dt
—(T—t0)2/4

Tia(7)

Result could be predicted without grungy math:
o Correlation of time symmetric signals is equivalent to
convolution
o Convolution of two Gaussians is a wider Gaussian (sum in
quadrature)
o Signals are the same when 7 =t

More complete derivation in appendix
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Example 2 (continued)
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Correlation of sampled data

Sampled data can be treated in similar manner as a continuous
function

Replace integrals by sums

Require sampled data streams both be uniformly sampled at same
interval, At

Sampled signals must be band-limited with Av < 1/2At (Nyquist
sampling theorem)

Note: sampled does not imply quantized; ignore quantization here
Given v;[l] and v;[l], the corresponding quantities are:

1
CZ][k] = NE v]l—i-k:
=1

SN wllloll + &)
VIRl S ol + 2
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Example 3: Seismology

T T T T T T T
r —— underneath "Fi—Pi-Li" expressway bridge q
—— at Virgo central building
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Image from Einstein Telescope design study document, 2011
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value

Sampling band-limited signal:
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value

Capture signal every unit interval

1.0

sample number
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value

Retain only samples
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value
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The interpolation function (sinc)
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value
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Properly interpolated function
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value

Comparison of original and reconstructed signals
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Correlation of Gaussian noise

Take 2 sampled signals, g1[/] and g2[l], where

o Each g;[k] is drawn from a zero mean, unit norm Normal
distribution

o (gi) =0, <g$> =1 (which implies C;; = T';;)

o (g;8;) = 0 (defines uncorrelated noise)

The expectation value of the correlation function vanishes

Chalk 291 lg2[l + K] =0

i—1

But its RMS does not )

OC1ak] = 7=
12[K] VN
This is the basis for calculating interferometer sensitivity

See appendix for details
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Correlation of signals with noise (at zero delay)

Corr[v;, vj] is bilinear in its signal arguments:

Corrlaa; + fb;,ycj+0d;j] = avyCorr

_l’_
+ B~ Corrlb;, ¢
+

A simplistic signal model for observation of a point source is

vik] = S[k] + Ni[k] = Vs go[k] + v/n1 g [K]
volk] = S[k] + Na[k] = v/s go[k] + v/n2 g2[K]

Where S[k] and both N;[k]| are all independent Gaussian noise
streams.

g; are unit norm zero mean Gaussian streams.
For convenience, s and n; are dimensioned as powers.
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Correlation of signals with noise (at zero delay)

* Make use of bilinearity and previous relations:

CZ][O] = <SS> + <N15> + <SN2> + <N1N2>

* And normalized correlation coefficient:

s
I';;10
”[ ] VS + nivs+ no
* In the low signal to noise limit (s < minng,ny)
s
r;0] =
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Correlation of signals with noise (at zero delay)

Noise does not enter the expectation value of C;;, but it does the
uncertainty:

252 4+ nys + sng + ning
ocl] = N

Some messy statistics used, left as exercise to the astute reader!

In the low signal to noise limit

Cylo] = sx/ 2
s 1

T';;]0] = + —

;0] —t

Exercise to reader: consider the strong signal case.
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Quick aside: interferometer sensitivity

Previous page allows one to write down the SNR for a measurement:

sV N sV N

SNR = =
\/nlng \/SEFDlsEFDQ

Usually instead the sensitivity of the baseline is expressed:

_ V/SEFD;SEFD;  /SEFD;SEFD,

VN V2AUT

SEFD is the System Equivalent Flux Density
o SEFD = Tys/g where g is antenna gain (units of K/Jy)
o Equals the brightness (in Jy) of a source required to double
antenna noise power (Tys)
o VLBA antenna SEFD is typically 300 to 500 Jy.

Additional efficiency factors may apply (e.g., quantization)

AS
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The (optical) double slit experiment

The film at the image plane of
a double slit is a correlator!

T = T — 71 is the path length \
difference A
Monochrome signal hits mask
v(t) = cos 2wt >
Signals at image: /

vi(t) = cos2mv(t — 1)

I(7)
va(t) = cos2mu(t — T2)
* This is an additive correlator

Intensity at image: * The constant term is the total

power

1(7) o ((i®) +0a))

x The brightness ripples are
= 14 cos2nvr

fringes
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Correlation of quasi-monochromatic signals

As seen before cross correlation of two equal-frequency signals gives
sinusoidal response with respect to 7.

Sinusoids have two free parameters: amplitude and phase.

Seems silly to need more than two measurements to completely
characterize correlator response.

Solution: measure two lags, separated by 90 degrees of phase!
Cij (1) = C45(0) cos 2wt + Cy5(1/4v) sin 2wvT
For convenience, bundle into a single complex number
Vij = Vi;(0) + Vi (1/4v)
This is proportional to the familiar visibility. And then
Vii(r) = Re (V;jeQﬂ'iu‘r)
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Part 2: The complex correlator

The complex correlator
The Hilbert transform
Analytic signals

Complex sampling
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Schematic of complex correlator

B

: ? > L[V ()dt > RV

> L [1()dt > SV

Vig (1) = {oi(t)v;(t + 7)) + i (vi(t)H[v5](t + 7))

31/86



*

*

*

Analytic signals

Given a real-valued signal v(t), define analytic signal
w(t) = v(t) + iH[v(t)]

Here H is the Hilbert transform

o Hv(t)] = i/oo :flds

— 00
o cos — sin and sin — — cos

o H[H[v(t)]] = —v(t) (the operation is invertable)
Analytic signals are mathematical tools

o Allows complex multiplication

o Simplifies Fourier transforms

o Simplifies fringe rotation
Remember: Im(w(t)) is not physical
See https://en.wikipedia.org/wiki/Analytic_signal for a
good discussion
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https://en.wikipedia.org/wiki/Analytic_signal

Hilbert transform example:

amplitude modulated signal




Compute Hilbert transform (blue + i green is analytic)




Reconstruct envelope (sum

blue & green in quadrature)




Analytic signal properties

x Energy content is double:

/w(t)*w(t)dt = 2/v(t)2

* Fourier transform has no negative frequency components:
Flw(®)](v) = 2H (v) Flo(t)](v)
where the Heaviside step function is:

12 1 T

1.0

0 v<0 . : ]

Hv)=< 1/2 v=0 0'8:_ | ’
1 v>0 os b ; ]

b -

00 | 4 ]

b L | Lo ]



Complex sampled data

« Start with a real sampled signal, v[k]

% Can compute the sampled equivalent of an analytic signal using
discrete Hilbert transform

% Z vln] k even

= { e’
° a 2 Z M k odd
™ -n

« Resultant signal, v[k] + iH (v)[k], carries duplicate information

x Can drop alternate samples to define:
wlk] = v[2k] + iH(v)[2k]

« Note that sample rate simply is inverse bandwidth: At = 1/Av
o Clock rate of digital electronics can be halved!
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Correlation of complex signals

Make use of the power of complex numbers

Note use of complex conjugation

Corr[wy, w;] = {wjwj)

= (ivy) + i {oitH[vs]) — i (H[vilvg) + (H[vi] H[vs])

= 2(v;) + 2 (v H[v)])
= 2V,

The above equation holds for continuous or sampled signals

Equality of the second and third expressions can be shown through

spectral analysis
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Spectral decomposition of signals

A band-limited signal can be expressed analytically as

Av ]
w(t) = / XM b (v) dv
0

Where w(v)* w(v) is proportional to the spectral power density of
the signal at frequency v.

Nyquist sampling simply captures this each At = 1/Av:
Av )
wlk] = [ () dy
0

The correlation function can be calculated as:

Vo ]
Vij(1) = / et w;(v)* w;(v) dv

1
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Part 3: The lag (XF) correlator

Concept

o First cross-multiply and accumulate (X)
o Then Fourier transform (F)

Spectral response
Realization of lag correlators in practice

Examples of lag correlators
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The complex lag correlator

Generally speaking, Fourier transforming a time series leads to its
frequency series (i.e., spectrum)

Vi;(7) can be considered a time series in T

What if we discrete Fourier transform it?

Assume n lags, each spaced by the sample rate, At

Vi; is complex-valued, so total bandwidth is Av = 1/At

n—1
2
‘7”[” = Z efZWikl/n‘/ij[k}
-t
Av l
_ / A, ( _ yAt) Bi(v)* @ (v) dv
0 n

Where did this come from?
What does it mean?
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The lag correlator revisited

Do you want this explained in gory detail?

n—1

2
Vlg[l] = Z 672mkl/n‘/12[k]

__n—1
k= 2

g .
— Z Nze—szkl/nwl[j]*w2[j_’_k]
oo A

-1
Av Av nT 1 N ]
_ dvy dvs Z - Z e—27r2kl/n
0 0 N 4
k=-—nzt =1

« eZﬂiAtjl/l Wy (Vl)* e?m’At(j+k)1/2 ,u~)2(y2)

42 /86



The lag correlator revisited ...

~ Av Av .
V12 [l] = / dl/l / dl/g Z e_QWZkJ(E—VQAt>
0 0

1 N
LS )y )
]:1

Av Av
~ / dl/1 dl/g An (fL — 7/2At> 5(1/2 — I/1) 1D1(V1)* 1212(1/2)
0 0

_ /An <fl _ yAt) 1 ()" (1) d

* Here A, (x) = sinnnmz/sinnx
x A, is related to the sinc function
* See appendix for Derivation of function A,

43 /86



Response

Interpretation

* Lag correlator response is equivalent to complex correlator with
additional factor
Ap(z) = sinnrx/sinmr

x The function A,, serves as a filter response
« Each output channel, [, has its own, shifted by Av/n

; 4 channel responses for n=7 2 Central channel response for n=5, 11, 21
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§
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Hanning smoothing

11

*x Damp oscillitory spectra by smoothing with kernel (Zv 3

1)

* Causes wider but much more contained spectral response

o Can throw out every other channel without loss of information

« Effective in reducing impact of RFI

Alternate Hanning smoothed channels for n=15

Hanning smoothed central channels for n=7
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Comparison: with and without Hanning smoothing

* Two spectra with same number of channels

*x Second one improved but comes at higher computational cost

& u o ~

4 channel responses for n=7

Alternate Hanning smoothed channels for n=15
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Response

1<

Comparison: with and without channel averaging

*x Two spectra with same number of channels

« Simple channel averaging does rather poor job (Gibb's effect)

4 channel responses for n=7 Boxcar channel average for n=35

//\\ o\ fd bdhed

4 (T I \
//\/\\54 ' ‘

A ”%w“‘%wm%vwv”*“
VAR VWA

.8 1.0

VA

80 0.2 0.8 10 6o 0.2

.4 0.6 0.4 0.6
Freq (fraction of band) Freq (fraction of band)
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*

Why all the odd numbers?

For symmetry sake want equal number of positive and negative lags
o This is actually important when considering closure quantities
We haven't yet discussed fractional sample correction
o This allows calculation at 7 # nAt
Thus an odd number of lags is natural to consider

All results generalize to even and odd numbers
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Real lag correlators

Conceptually same as complex lag correlators
Need twice as many real lags for same response
o Each lag is half as long
Half as many multipliers needed, but they run at twice the rate
Use real-to-complex Fourier transform
Spectral expansion of signals uses sines and cosines

Both real and complex lag correlators used in practice
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Schematic of (real) lag correlator

[A+4]
24

Jdt [dt

| FFT |

!

(Vi) | k=1...N}

x Note: FFT usually performed in software even, on hardware
correlators
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Examples of lag correlators

« Mark4 (JIVE, Haystack, * Old VLA Correlator
WACO, Bonn) + 1980-2008

% 1997-present (mostly retired)
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Part 4: The FX correlator

Filter banks
Concept

o First Fourier transform (F)
o Then cross-multiply and accumulate (X)

Spectral response
Realization of FX correlators in practice
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FFT filter banks

« FFT incoming (real) bandwidth Av signal in blocks of 2n

o Shown below

« or FFT incoming (complex) bandwidth Av signal in blocks of n

* Produce n (complex) time series, each with bandwidth Av/n

HE T
Sllsls Sllsls S
~ | NI MRS © .
gl g gl |22 gl |22 B mose
©| © 5 T | © c| | S| @ o time series
n|n [2] n|n (2] n|lun (2]
Fourier
transform
Channel 1 Channel 1 Channel 1 Channel 1
Sample 1 Sample 2 Sample 3 time series
Channel 2 Channel 2 Channel 2 Channel 2
Sample 1 Sample 2 Sample 3 : :
time series
Channel n Channel n Channel n
Sample 1 Sample 2 Sample 3 > (_:hanne! n
time series
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FFT filter bank frequency response

* Starting from a complex sampled signal, the filter bank output is:

n—1

2
u?[l] _ Z e—2m‘kl/nw[k]
=
n—1
Av 2
— / Z eZTrik(Atufl/n) 'UNJ(V) dv
o, e

-5

_ /OAV A, (i _ uAt> B(v) dv

* Note symmetric summation; through universal relabeling of samples
by 1/2 sample, an even number of samples can be accomodated.
o Not possible in lag case because the parameter was the lag
itself.
o The process is equivalent to a shifted FFT
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Schematic of FX correlator

T —>» FFT
[dt [dt
Vij(v1) Vij(v2)
Tj > FFT
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FX correlator frequency response

x The visibility is computed as

Viglll = (@ill]" w;[11)

_ /OAV [An (i - uAt)]2 Bi(v)* @ (v) dv

« Similar to lag correlator response but with extra factor of A, ()
o Each filterbank contributes one factor
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FX correlator frequency response

« Each channel’s response is similar to that of the sinc? function:

Ap(x)? = (sinnmz/ sinwz)?

x Generally better than lag corretor output but worse than Hanning
smoothed lag correlator output.

4 channels response for n=7

[
[V

IS

Response

/
\|

|

Response

/
/
/

=

\

\

|

Ao

Am
AL

Central channel response for n=5, 11, 21

-
=

—
n

N

=
1)

l
7\

s LA,

Freq (fraction of band)

0.2

0.4 0.6
Freq (fraction of band)

57 /86



Comparison: with and without channel averaging

*x Two spectra with same number of channels

* Simple channel averaging

* Neighboring channels fairly well isolated

x Peak sidelobes still rather high

4 channels response for n=7

5 channel boxcar average for n=35
T
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0.8

1.0
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Examples of FX correlators

* Most software correlators (e.g.,
DiFX and SFXC)

* VLBA hardware correlator x Not tied to particular hardware

* 1992-2009 * DiFX can run on a Raspberry
Pil
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What DiFX (Distributed FX) does

Decode incoming data

Select data (coarse time delay)
Fringe rotate

Fourier transform

Select sideband

Apply fractional delay correction
Cross-multiply

Short-term accumulate
Long-term accumulate

Write visibility to disk

More on this at the demo tomorrow
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Part 5: Fractional sample delay and fringe rotation

x Effect of delay error
* Fractional sample delay compensation

* Fringe rotation
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Effect of a delay error

« Assume a broadband signal of uniform spectral density |w(v)| =1
* Look at auto-correlation with a time lag of 7

x Consider one correlator channel with ideal spectral response
between 1 and vs.

.
Cn(T) = ﬂ dv GQW’LTV'UTJ(Z/)*UT}(V)
2

1 V2 -
— dv 6271'17'1/
vy — 11 V1

p2mirvo S TTAv

TTAv

x Where vg = % (v1 + v2) is the channel center frequency
* And Av = vy — vy is the channel bandwidth
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Effect of a delay error

* There are two effects:

o There is a phase shift of 2771/
o There is an amplitude reduction (decorrelation) by amount

sin mT Av
T Av
* The phase error is correctable
* The amplitude can be restored

o But decorrelation (loss of SNR) is permanent
o This is devistating unless 7 < 1/Av
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Fractional sample compensation

As one observes an astronomical source, the correlator delay model,
7 must change as the source moves across the sky.

Source motion is smooth with time.
Bulk delay is compensated by choosing which samples to correlate.

Each incoming datastream can be offset from integer sample by as
much as :l:% of a sample.

Compensation is handled differently on different correlator
architectures.

Spectral line (multi-channel) correlators simplify life: At < 1/Av in
most cases so effective delay error is reduced.
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*

Fringe rotation

Essentially the time-dependent fractional sample compensation
Various possible places to implement:
o At end of each visibility spectrum calculation (as phase
gradient)
o During accumulation, after each FFT (as phase gradient;
FX-only)
o In time domain, directly on each sample (sample phase
rotation)
Magnitude depends on frequency, not bandwidth!

Remember! Want to keep phase change well under 1 radian over
any averaging period.
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Post-integration fringe rotation

The least costly (in terms of operations)
Phase applied to visibility spectrum (part of fractional sample corr.)

‘/12(7_7 I/) _ e*27’l’il/AT‘/’12([T], I/)

Where [7] is the delay corresponding to the nearest integer number
of samples, and
AT = 7 — [7] is the fractional sample being compensated.
This is valid when T'7v < 1
Example: b = 1 km equatorial baseline at v = 1 GHz at zenith
passage

o Phase as function of time: ¢(t) = 2wvbsin(27t/86400)/c

o The fringe rate, ¢(t) = 4mw2vb cos(2mt/86400)/(86400c), peaks

at 1.5 rad/sec.

o Thus post-integration fringe rotation is valid for T' < 0.6 sec

Often done on sub-integration basis.

66
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*

Post-FFT fringe rotation (FX-only)

With higher fringe rates, fringe rotation must be done on shorter
timescales.

FX correlators expose the spectrum after each FFT.

Typical continuum correlator output has frequency resolution of
0.25 MHz, implying FFT timescales of 4us.

On a 8611 km baseline (longest VLBA), this is OK for v < 20 GHz.

Use with care on continent-scale VLBI arrays!

67 /86



*

*

*

*

Time-domain fringe rotation

This is the most common form of fringe rotation used by VLBI
Simply multiply each sample by 27027 hefore correlating
This makes for a complex-valued signal

o But it is not an analytic signal!

Note! This technique only works well for small fractional
bandwidths

o Same phase applied to all frequencies

o Results in decorrelation near band edges by sinc ﬂ'%

o Worst cast at VLBA: 128 MHz BW centered around 1.28 GHz
» 1.6% decorrelation at band edge
» 0.5% decorrelation averaged over band
» This is still generally acceptable

2
o Decorrelation grows as (M)
vo
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Part 6: Miscellaneous topics

Quantization
Pulsar gating
Other correlator functionality

Design trade-offs
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Quantization noise

Quantization efficiency

levels no(f=1) nq(f=2)

2 0.64 0.74
3 0.81 0.89
4 0.88 0.94
00 1.00 1.00

(For normal-distributed v)
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Real 2-state (1-bit) quantization

0 1 Code Range Value Frac.
0 —ootod —/2/mo 50%
1 1 1 Otooco +/2/mo  50%

—o 0 o v
*x Values determined so as to minimize quantization noise
* Quantization efficiency ng = 64%

x Effective number of bits, ENOB =1
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Real 4-state (2-bit) quantization

/\ Code Range Value Frac.

00 A TOFOTIN 1! 00 —ocoto —w —aR 17%
10 —wvpto0 —a  33%

01 0 to vy @ 33%

—w 0w v 11 vp to oo aR 1%

* Optimal values: vy = 0.960; R = 3.3359 — 1o = 88%
+ ENOB =1.92

* a = 0.4780 o determined so as to minimize quantization noise

Note: Different conventions for the codes exist (e.g., Mark5B, VDIF)
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Quantization noise distribution

A
=
d
A
* Quantization noise is
non-Gaussian A
x Approaches uniform
distribution
* Distributions for 1-bit and =
2-bit sampling shown 4
A e
/ \
\ /
N\ 7/
-0 .
o 0 o Av
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Quantization correction

1 T T T
x At low correlation, 0.8
quantization increases
correlation 0.6 L

* Quantization causes
predictable non-linearity 04 L
at high correlation

Tijq

* Linear correction is 02 |
easy; full correction is — 2 lelvell
. # ---- o0 leve
complicated ... o

0 0.25 0.5 0.75



Quantization in the spectral domain

* 1-bit quantization is extreme case of harmonic distortion
x Power gets scattered into harmonics
*x Oversampling allows partial discrimination of unwanted harmonics

o Increases signal to noise
o At a substantial data transmission cost
o Very quickly diminishing returns; better to use more bits
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Pulsar gating

Pulsars emit regular pulses with small duty cycle

Period in range 1 ms to 8 s; usually At < Pyyisar < T’
Blanking during off-pulse improves sensitivity

Propagation delay is frequency dependent: best done on FX
architecture

0.5} .

Amplitude

o5k, . o b
0 100 200 300
Pulse Phase (°)
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Other correlator functionality

Pulse cal extraction
Switched power extraction
Data weights

Multiple phase centers
Spectral zooming

Band matching
Overlapped FFTs
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Trade-offs: hardware vs. software

*x Hardware advantages
o Can be 10-100x faster
o Can be 10-100x more power efficient
o Predictable operations once commissioned (usually)
o Guaranteed real-time performance

* Software advantages

Short development timescales
COTS Hardware: cost effective
Generally more flexible
Extensible, even after deployed

o O O O

x GPU-based correlators straddle the two

o Higher compute density than CPUs
o Less flexibility than CPUs
o More difficult development than CPUs
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Trade-offs: lag or FX architecture?

« Lag (XF) advantages
o Can implement weights more precisely
o Individual operations can be performed with small word sizes
o Access to uncorrupted lag spectrum
» Improved quantization correction
x FX advantages
o Many fewer operations (increasingly so with larger spectra)
o Improved native spectral response
o Access to frequency domain on short timescales
» Zoom bands and band-matching
» More effective pulsar gating
» Sub-integration RFI characterization
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Spectral response and delay window duality

Processing Spectral response Delay window

e | T

lag

/\

lag w/Hanning

FX

A\
M
A N

FX w/boxcar

* Related by Fourier transform
% Must take into consideration when calculating fringe SNR!
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Hybrid correlators

*

Example: Jansky VLA's WIDAR correlator
x 2008-present

“Filter-bank XF" architecture

Filterbank forms complex-valued sub-bands

*

*

*

Each sub-band feeds a complex lag correlator

Left: WIDAR during construction  Right: WIDAR baseline board
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Appendices

Trigonometric identities
Symmetric power series sum
Correlation of cosine and sine functions

Correlation of Gaussian pulses
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Trigonometric identities

cos(x - y)
sin(z + y)

COS X COS Y
cosxsiny
sin x siny

eiz

COS T

sinx

cosx cosy Fsinzsiny

sinz cosy + coszsiny

1
3 [cos(z — y) + cos(z + y)]
1. . .
S [sin(e — y) + sin(z + )
1
S leos(z — ) — cos(z — y)]
cosx +isinx
eix + efix

2
eix _ e—ix

21
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Symmetric power series sum

m
A2m+1(x) _ Z e—szck
k=—m
(9] oo
— Z e—z27rack _ Z e—z?Tra:k
k=—m k=m+1
9]
_ (ez(Zm)ﬂ'ax — e i(2m— 2)7ra:) Ze—’b27'l'$k
k=0
_ 6i(2m)7rw - e—i(2m—2)7rw 1
o 1 — e—i2mzm

et @mtLrz _ —i(2m+1)rz

eirTm _ o—imxm
sin(2m + 1)mz sinnmx

= ———————— — Ay(x) =

sin T sin Tx

Note: in the limit that n — oo, Ay, (z) — (), % — sinc 27x.
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Correlation of cosine and sine functions w/ real correlator

1 T
Cia(r) = TILII;O2T/TCOSQ7T75 sin27(t 4+ 7)dt
1 (M1
- T]gréo 57 . 3 [— sin 27vT + sin 27v(2t + 7)] dt

T
1 1
- T11—I>]go T [—t sin 2mrvT — o cos 2v(2t + 7')] .

1 1
~ lim 2 sin?
= :Illm 5 sin 27vr + O ()

= 3 sin 2wvT
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Correlation of Gaussian pulses

- ffooo et /2o—(t—to+7)?/2 34
2] (T) - ffooo 67t2 dt

1 / O (t4to)2—72)2 )2 —(t—to)2+7/2)2 /2
= — e e dt
f

_ —t2 —(7—t0)?/24
= e t
f/

— 7' to) /2

Note use of Gaussian integral identity (twice):

/ e dy = NZs

—00
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