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e Part|. lonospheric effects on microwave signals(!)
e PartIl. Path delays in the neutral atmosphere?
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lonosphere

Chapman electron density profile and the
ionospheric layers D, E, F1 and F2

1000
! l\
500 \
= 400 NN
E 200 \ \F2 Layer
5 200 o )
S <f /F1 layer
I
100 Bay
e | U —"F Layer
/m
50— -
1 108 10° 10 10" 02

Electron density [elec/m?]

Alizadeh et al. 2013




Outline

Group and phase velocity

lonosphere refractive index

lonospheric delay

How to deal with ionospheric delays in geodetic VLBI




1 Group and phase velocity

e Dispersive medium (lonosphere):

— Propagation velocity of an electromagnetic wave is
dependent on its frequency

— Phase velocities v, and group velocities v, are different
dvph‘

dA

 Non-dispersive medium (Neutral atmosphere):

— Phase and group velocities are the same and are equal or
lower than the speed of light c

Vo = lf Vor = Vpn — A




2 lonosphere refractive index

 Phase and group refractive index

¢ not in contradiction with
Voh = >=C ..
Ny Theory of Relativity
C
Vor = —  <=C
Ny
dan




2 lonosphere refractive index

 Appleton-Hartree formula for phase refractive index

ns, =1 X (16)
ph— " 192 gin? ﬂ
| — 20800 4 L (ly4sint 6+ ¥2cos2 0(1 — X)2)'/
where
OJ-3 n)
X=2, Yy =91,
‘, _
0_)0:2]'L'f0: 1(’ . szzjer :,‘ ,
n complex refractive index v electron collision frequency
@ =2nf (radial frequency) f wave frequency
oy electron plasma frequency oy electron gyro frequency
g permittivity of free space By magnitude of the magnetic field vector Bg

0 angle between the ambient magnetic e  electron charge
field vector and the wave vector m, electron mass 9



2 lonosphere refractive index

 Higher order terms may be neglected (Hawarey et al.

2005)
e Phase refractive index

N, N,
o' =1-—C— =1-40.31—

p;’r f 2 ]t 2

e Group refractive index

N, Ne
gin _ 1_|_C2j2 =1 —|—40317
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3 lonospheric delay

 Group delay or phase advance of signals

Ap“”’I — / nds — / dso

e First order approximation

ionl ‘ ,
App/? = —fz/Ng d;S(:}

 Phase advance and group delay

4031 4031
Applr ! — = fz /NC dSO Apérll — j2 /N(? dS{j
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3 lonospheric delay

e Integrated electron density: Total Electron Content

— TEC: Total amount of free electrons in a cylinder with a
cross section of 1 m?

e 1 TECU = 101 electrons per m?

4031
Apé,f — 7

STEC |m|

e lonospheric delays in VLBl due to 1 TECU
— 7.6 cm at S-Band (2.3 GHz)
— 0.6 cm at X-Band (8.4 GHz)
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4.2.4 VLBI and the ionosphere

e Typical channel distribution of a geodetic VLBI
experiment

video channel
.~ bandwidth (VBW)
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4.2.4 VLBI and the ionosphere

 Group delay is determined as the slope of the fringe
phases across the band

e VLBI group delays are not assigned to a reference
frequency that is actually observed (unlike GNSS)

» "Effective frequency" is used to calculate the delays
in the usual way
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4.2.4 VLBI and the ionosphere

o Effective frequency

gr
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\ Loti-nl L 8- Yo Rt
i=1 i=1Jt =1 =1 !

— f, reference sky frequency
— f, channel frequency
— p; correlation amplitude at channel i
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4.2.4 VLBI and the ionosphere

* |lonospheric delay per baseline observation per band

(04
Tor = Tif T 3
gr
40.31 ‘ ‘ 40.31
o = ; (/ N.ds| — /Ngng) = p (STEC, — STEC;)
— Tgr observed group delays
— Ty ionosphere free group delays
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4.2.4 VLBI and the ionosphere

e Elimination with ionosphere free linear combination
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4.2.4 VLBI and the ionosphere

e Ambiguity resolution and ionosphere delays

— have to be calculated together in an iterative approach
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4.2.4 VLBI and the ionosphere

Instrumental biases

— Observations contain extra delay term caused by
instrumental effects

94 94
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4.2.4 VLBI and the ionosphere

* Instrumental effects absorbed in clock estimates
* |lonosphere delays contain instrumental effects

fe
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4.2.4 VLBI and the ionosphere

e VLBI is only sensitive to differences in ionospheric
conditions, however it is possible to derive TEC values

VTEC [TECU]

— Hobiger et al. (2006)

VLBI VTEC at Wettzell
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4.2.4 VLBI and the ionosphere

phase

 VGOS: Separation of dispersive and non-dispersive
delays during fringe detection

~ combination
g

— non-dispersive delay

Source effects are
frequency-dependent
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Outline

Basics

Definition of the path delay in the neutral
atmosphere

Modelling delays in the neutral atmosphere
Atmospheric turbulence

Application of space geodetic techniques for
atmospheric studies
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1 Introduction

* Neutral atmosphere vs. troposphere

— We need to consider layers of the atmosphere up to about
100 km (stratosphere)

— "Tropospheric delays”

 There is no frequency-dependency for VLBI

observations in the neutral atmosphere (unlike the

ionosphere)

25




2 Basics

* In general, the propagation of electromagnetic waves
is described by Maxwell's equations

e Refractive index n versus refractivity N
N=(n—1)-10°
— n~=1.0003; N = 300
* Niscomplex number
N = No+N'(v)—iN"(v)

— vis frequency
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2 Basics

* Imaginary part causes absorption (used for WVR)

— of [no] importance for delays

* Real part causes refraction and propagation delay
p
N = Z ( V)p; + Bi(V) T’)

— Debye (1929)

— B, term for permanent dipole moment of molecules (water
vapour)
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2.1 Microwaves

e p=1013 hPa, T=300 K, rh = 100%, different
concentrations of liquid water (e.g., fog or clouds)
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2.1 Microwaves

e Dry and wet refractivity

N = klﬁ y _|_k2&z k an_

T T T2 W

* Hydrostatic and non-hydrostatic ("wet")

N = klip ‘I‘ké&z ‘|‘k%&z_ NII‘I‘NH-*
M, T " T2
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Height [km]

2.1 Microwaves

 Radiosonde profiles Vienna

20 June 2012, 0 UT

7 August 2012, 0 UT
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3 Definition of path delay in the neutral
atmosphere

In VLBI, the difference in travel time to a quasar from
two telescopes is measured

Propagation speed of the signal is lower than speed
of light in vacuum

Phase and group delays are equal in the neutral
atmosphere

If variation in refractivity over the distance of one
wavelength is negligible, we can describe the
propagation as a ray and apply geometrical optics
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3 Definition of path delay in the neutral
atmosphere

e Electric path length L along the path S

L= /n(s)ds
S

* Principle of Fermat: L is minimized

Nilsson et al. 2013
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3 Definition of path delay in the neutral
atmosphere

e The atmospheric delay AL is defined as the excess
electric path length

AL=L—-G= / I (S)dS —G= Nilsson et al. 2013
S

_ 10 / N(s)ds+S—G
S

— AL, +AL,+S—G




3 Definition of path delay in the neutral
atmosphere

Bending effect S—G considered in hydrostatic
mapping function (about 2 dm at 5 degrees)

Zenith hydrostatic and wet delay

AL; = 107°° [ Nu(2)dz

l‘?{)

AL:, =107° [ N,(z)dz

W
/ 1)

34



3.1 Hydrostatic delay

e Hydrostatic equation

 The pressure tells us how much mass is above the
site but not its vertical distribution

— That is enough information about the zenith hydrostatic
delay, if we have a rough estimate of the height of the
atmospheric centre of mass above the site
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3.1 Hydrostatic delay

e Zenith hydrostatic delay with equation by
Saastamoinen (1972) as refined by Davis et al. (1985)

R pg
Mygerr

AL; = 10" %k

Po
AL; =0.0022768
h f (9 h{})

* Thus, we need the pressure at the site
e 1000 hPa — 2.227 m zenith hydrostatic delay
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3.1 Hydrostatic delay

e Empirical models for the pressure like Berg (1948) or
Hopfield (1969)

pressure local recordings|grid values GPT

availability at sites all (by interpolation)|all

time span per observation |since 1994 unlimited

spatial resolution|per site 2.0x2.5° spherical harmonics (9/9)
time resolution |per observation |6 hours annual

e Local recordings recommended, but be careful with
breaks

e GPT2 (gridded data set)
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3.1 Hydrostatic delay |

Pressure values at O'Higgins (Antarctica)
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3.1 Hydrostatic delay

e 3hPa—> 1 mm height
 Height standard deviation between GPT and ECMWF

5 mm
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3.1 Hydrostatic delay

 Be aware of destructive effects between atmospheric
loading and empirical pressure values for the

determination of zenith hydrostatic delays
— When you apply empirical pressure values like those from
GPT or GPT2 for the determination of the a priori zenith

hydrostatic delay, you already do a bit of atmosphere
loading correction

40




3.1 Hydrostatic delay

true pressure: 1020 hPa
mean pressure (GPT): 1000 hPa

loading: 8 mm 1

A height: 7 mm t
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3.2 Wet delay

e Varies between 0 cm (e.g., poles) and 40 cm

AL: =107 Uh (kg% “Ddz+
0

AL [cm] & p,,o[hPa]

+CO

/?0

(k3

Pw 1
) Z,

)dz}
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3.2 Wet delay

e Zenith wet delays must be estimated in VLBI analysis

 For example, as piecewise linear offsets with
constraints (quasi observation equations)

t— 1

AL, (t) = mfi,(1) - x1 + mfi, (1) -
Ih — I

(2 —xp)
Teke et al. 2012

IAL,, _ _ [ —t
: — ”?’fl'.'(f) o ”U(w(f) | |

C].Y] fz_f] /ﬁﬁ'--ﬁ\

dAL,, t — 1

dx, mfu( ) Ih — I

I ‘ .
r I,

(observation epoch) epoch of edtimate



3.2 Wet delay

* Conversion of zenith wet delay to Integrated Water
Vapour (IWV) and Precipitable Water (PW)

IWV
IWV =TI1AL;, PW =
Pw, f1
10°M,, ]
Il = PW = kAL,

k
{k’ﬁﬂfe
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4 Modelling delays in the neutral
atmosphere

* Ray-tracing
 Mapping functions and gradients
 Water vapour radiometry
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4.1 Ray-tracing

e To find the ray-path
from the source to
the telescope (has to
be done iteratively,
"shooting")




4.1 Ray-tracing

e Total delays at 5° outgoing elevation angle at Tsukuba
on 12 August 2008 (2D not always shorter!)

—
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4.1 Ray-tracing

 Many groups/persons working on ray-tracing
— Goddard, Vienna, T. Hobiger, ...

Eriksson et al. (2014) find
improvement for ray-traced
delays

Length WRMS reduction (mm)
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4.2 Mapping functions

Slant delay = zenith delay times mapping function

AL(e) =AL*-mf(e)

Mapping functions to map down a priori zenith
delays and to estimate residual delays

Estimation every 20 to 60 min; this allows a least-
squares adjustment

49




4.2 Mapping functions

o Different elevation dependencies for zenith delays
(mf), clocks (1), and station heights (sin e)

dh Nilsson et al. 2013

clock AL 2 ALz -mf(e)

dh: S|n(eV\ /
VAR
AN

N
g

/

s \\

/.
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4.2 Mapping functions

Mapping function not perfectly known

Errors via correlations also in station heights (and
clocks)

Low elevations necessary to de-correlate heights,
clocks, and zenith delays

Trade-off —> about 7 degrees cut off elevation angle
(sometimes with down-weighting)
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4.2 Mapping functions

 Mapping function too large — zenith delay too small

— station height goes up
 Rule of thumb: "Station height error is about one
fifth of the delay error at 5 degrees"

Exercise
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4.2 Mapping functions

 Hydrostatic and wet mapping functions

AL(e) = AL; -mfi(e) + AL, -mfy.(e)

e Example:

— Zenith hydrostatic and wet delays shall be 2000 mm and
200 mm, respectively;

— Hydrostatic mapping function at 5° too large by 0.01 (10.16
instead of 10.15);

— Slant delay at 5° too large by 20 mm
— Station height too large by 4 mm (one fifth)
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4.2 Mapping functions

 Wet mapping function larger than hydrostatic mf

 Mapping functions are a measure for the thickness of
the atmosphere (1/sin e means flat)

hydrostatic

wet

Earth

Nilsson et al. 2013 55




4.2 Mapping functions

 Modern mapping functions use continued fractions
form as specified by Herring (1992)

a
|
| i
4+
mf(e) = — _ZC
sin(e) 4 A
sin(e) + —
(€) sin(e) + ¢
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4.2 Mapping functions

Saastamoinen (1972), Chao (1974), CfA2.2 (Davis et
al., 1985), MTT (Herring, 1992), ...

New Mapping Functions (Niell, 1996)

Isobaric Mapping Functions (Niell, 2001)

Vienna Mapping Functions 1 (Bohm et al., 2006)
Global Mapping Functions (Bohm et al., 2006)

Global Pressure and Temperature 2 (Lagler et al.,
2013)
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4.2 Mapping functions

* Vienna Mapping Functions 1
— empirical functions for b and c coefficients
— coefficients a by ray-tracing at initial elevation angle 3.3°
— "1D ray-trace"

— available for all VLBI sites (resolution 0.25°) and on global
grid

http://ggosatm.hg.tuwien.ac.at/
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4.2 Mapping functions

VMEF1 ~21 ECMWF pressure levels: T, p,., h

interpolation

ray-tracing
(e =90° and e = 3.3°)
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4.2 Mapping functions

VMF1 @ variableintime
1 @ and space
| b
L 1+cC
m(e)= :
sin(e)+ »
, sin(e)+ —
ray-tracing sm(e) C

analytical functions
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4.2 Mapping functions

e Hydrostatic VMF 1 versus GMF at 5° at Fortaleza

hydrostatic mapping function
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Nilsson et al. 2013
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4.2 Gradients

 Modelling azimuthal asymmetries
— to account for higher atmosphere above the equator
— systematic effects, e.g. at coasts
— local weather phenomena

e Gradients typically estimated every 6 hours
e Order of magnitude

— 1 mm gradient — 100 mm delay at 5° elevation
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4.2 Gradients

* "Linear horizontal gradients" of refractivity

Atmosphere

Ns
Earth

Nilsson et al. 2013




4.2 Gradients

e MacMillan (1995)

AL(a,e) = ALo(e) +mfy(e)cot(e)(G,cos(a) + Gesin(a))
e Chen and Herring (1997)

AL(a,e) = ALy(e) +mf,(e)(Gpcos(a) + Gesin(a))

1
sin(e) tan(e) + C

mf,y(e) =
e.g., C=0.0032
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4.2 Gradients

e Tilting of the mapping function

G cot(e)

sl _ ————— T Feote)mfe)

Atmosphere

Nilsson et al. 2013
Earth
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4.2 Gradients

* In the early years of VLBI (before 1990) gradient
estimates need to be constrained because of poor

observation geometry

e If possible, estimates should be constrained to a
priori values (different from zero, accounting for the
atmospheric bulge above the equator and local
effects)
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4.2 Gradients

Source declination differences between estimating

and not estimating gradients

d) 700 r
600 r
500 |
400 r

ADe [pas]

300 -
200 ¢
100+

Hofmeister, 2013
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4.2 Gradients

 Goddard provides static gradients

e Vienna provides 6 hourly gradients from the ECMWF
— Weighted (with height) refractivity gradients toward east

at Fortaleza

Nilsson et al. 2013
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4.4 Water vapour radiometry

e WVR measure the thermal radiation from the sky at

microwave frequencies where the atmospheric
attenuation due to water vapour is relatively high
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5 Atmospheric turbulence

Random fluctuations in refractivity distribution

Structure function as modified by Treuhaft and Lanyi
(1997)

IR|*

o [IRIT
L

C 2 is the refractive index structure constant

D,(R) = <[n(r) —n(r—l—R)]2> — C'j,zI

L is the saturation length scale
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5 Atmospheric turbulence

e Spatial structure function for the zenith wet delay

H L
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Distance p [m]

* Frozen flow theory
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5 Atmospheric turbulence

* Turbulence simulator (Nilsson et al., 2007) very
useful for (VGOS) simulations
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5 Atmospheric turbulence

e Simulations e fast 12m telescopes

R e twin telescopes
—ag— Solve

S ol ——rer S

5 | Troposphere is limiting

o factor!

o |

o

C 4

©

g 7

S

0 1 'l 1 1 1 1
0 60 120 180 240 300 360

source switching intervall in s .
[Petrachenko et al., 2009]
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Application for atmospheric studies

e Zenith wet delays at Wettzell (Nilsson, 2011)
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THANKS FOR YOUR ATTENTION
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