Signal Propagation

Johannes Böhm Third IVS VLBI School March 2019, Gran Canaria

Atmosphere

• Atmospheric opacity

Wavelength

Wikipedia.de

Atmosphere

Department of Geodesy and Geoinformation Research Division Higher Geodesy

- Upper part of the atmosphere from about 60 km to 2000 km with the main concentration of particles between 300 and 400 km
- The electron production in the ionosphere is a direct consequence of the interaction of the solar radiation with atoms and molecules in the Earth's upper atmosphere
- Definition of the ionosphere:
 - Number of free electrons and ions is large enough to affect propagation of electromagnetic waves

Ionosphere

- Dispersive medium: propagation velocity of an electromagnetic wave is dependent on its frequency
- In such a medium the velocity of a sinusoidal wave and a wave group are different (phase vs. group velocity)

$$\nu_{ph} = \frac{c}{n_{ph}} \qquad \nu_{gr} = \frac{c}{n_{gr}} \qquad \nu_{gr} = \nu_{ph} - \lambda \, \frac{d\nu_{ph}}{d\lambda}$$

• Refractive index

TU Wien

$$n_{gr}^{ion} = 1 + C_2 \frac{N_e}{f^2} = 1 + 40.31 \frac{N_e}{f^2}$$

Department of Geodesy and Geoinformation Research Division Higher Geodesy • Represents the total amount of free electrons in a cylinder with a cross section on 1 m² and a height equal to the slant signal path $STEC = \int N_e(s) ds$

I TECU is equivalent to 10¹⁶ electrons/m²

- 1 TECU corresponds to
 - 7.6 cm at S-band (2.3 GHz)
 - 0.6 cm at X-band (8.4 GHz)

• Only relative values of STEC can be determined

$$\tau_{gx} = \tau_{if} + \frac{\alpha}{f_{gx}^2} \qquad \tau_{gs} = \tau_{if} + \frac{\alpha}{f_{gs}^2}$$
$$\alpha = \frac{40.31}{c} \left(\int N_e ds_1 - \int N_e ds_2 \right) = \frac{40.31}{c} \left(STEC_1 - STEC_2 \right)$$

TU Wien Department of Geodesy and Geoinformation Research Division Higher Geodesy • Ionosphere-free group delay based on effective frequencies

$$\tau_{if} = \frac{f_{gx}^2}{f_{gx}^2 - f_{gs}^2} \tau_{gx} - \frac{f_{gs}^2}{f_{gx}^2 - f_{gs}^2} \tau_{gs}$$

• Instrumental biases are included (estimated w clocks)

X/S VLBI and the ionosphere

• Vertical TEC estimation from VLBI

only possible with appropriate use of constraints

VGOS and the ionosphere

- Phases are connected across the whole band
- Ionosphere delays are estimated together with the group delays in the fringe-fitting process

Troposphere

- Troposphere delays: strictly speaking delays in the neutral atmosphere (up to 100 km)
- Essentially no frequency dependency across microwave regime
- Refractivity N versus refractive index n

 $N = (n-1) \cdot 10^6$

- N ≈ 300, n ≈ 1.0003
- Units of N: ppm, mm/km, "Neper"

Refractivity

• Refractivity as a function of pressure, temperature and humidity, (and liquid water)

$$N = k_1 \frac{p_d}{T} + k_2 \frac{e}{T} + k_3 \frac{e}{T^2}$$

- Dry wet → hydrostatic "wet"
- Wet delay larger than "wet" delay by about 3 %

TU Wien Department of Geodesy and Geoinformation Research Division Higher Geodesy

Refractivity

 Wet part: surface values not representative for the upper air conditions
20 June 2012, 0 UT

Radiosonde profile Vienna

Path delay

• Bending effect S – G about 2 dm at 5 degrees elevation

• Equation by Saastamoinen (1972)

$$\Delta L_{h}^{z} = 0.0022768 \frac{p_{0}}{f(\theta, h_{0})}$$

 \approx 2.3 m at sea level

- Consequently we need the pressure at the site to determine the hydrostatic zenith delay very accurately
 - local recordings at the site (preferable if available)
 - gridded values from numerical weather models
 - empirical (blind) models like GPT

Wet zenith delay

- Estimated from VLBI observations
- Could be determined from
 - Ray-tracing through numerical weather models
 - Water vapour radiometry
 - GNSS analysis

Konrad (Elgered et al., 2012)

• Elevation dependent mapping functions used for a priori hydrostatic delay and estimating zenith wet delays

 $\Delta L(e) = \Delta L^z \cdot mf(e)$

- Zenith wet delays estimated every 20 to 60 minutes
- Correlation between height, clocks and zenith delays
- Partials are sin(e), 1, and mf(e)
- Separation into hydrostatic and wet part

 $\Delta L(e) = \Delta L_h^z \cdot mf_h(e) + \Delta L_w^z \cdot mf_w(e)$

- Mapping function not perfectly known
- Errors via correlations also in station heights (and clocks)
- Low elevations necessary to de-correlate heights, clocks, and zenith delays
- Trade-off → about 5 degrees cut off elevation angle (sometimes with down-weighting)

Mapping functions

- The station height error is about 1/5 of the delay error at 5 degrees elevation (if cutoff is at 5 degrees)
- The corresponding decrease of the zenith delay is about half of the station height increase

 $\mathsf{D}_{\mathsf{L}}(\mathsf{e}) = \mathsf{D}_{\mathsf{z}} \cdot \mathsf{m}(\mathsf{e})$

$$D_L(e) = D_z' \cdot m(e)$$

TU Wien Department of Geodesy and Geoinformation Research Division Higher Geodesy • Continued fraction form (Herring, 1992)

- Example Vienna Mapping Functions
 - Empirical functions for b and c coefficients
 - Coefficients a by ray-tracing and inversion using 6h data of the ECMWF
 - Available for all VLBI sites and on global grid

• VMF1 versus GMF at Fortaleza (Brazil) at 5 deg. elevation

• Chen and Herring (1997)

$$\Delta L(a, e) = \Delta L_0(e) + m f_g(e) (G_n \cos(a) + G_e \sin(a))$$
$$m f_g(e) = \frac{1}{\sin(e) \tan(e) + C} ,$$

- Typical gradient: 1 mm (corresponds to 1 dm at 5 deg. elevation)
- Estimated e.g. every 3 hours
- Caused by weather fronts, coastal situations, atmospheric bulge, ..

Tropospheric gradients

• Mean hydrostatic north and east gradients (Landskron, 2018)

TU Wien Department of Geodesy and Geoin Research Division Higher Geodesy

 To find the ray-path from the source to the telescope (has to be done iteratively, "shooting")

θι

 Easier in 2D case (6 equations), because no out-of-plane components

- http://vmf.geo.tuwien.ac.at/
- Ray-traced delays for the complete history of VLBI observations available there
- Online tool to do your own ray-tracing at VLBI sites
- Vienna Mapping Functions coefficients (from analysis and forecast data)
- 6h hydrostatic and wet gradients
- Empirical "backup" mapping functions, e.g. GPT3

Atmospheric turbulence

- Random fluctuations in refractivity distribution
- Structure function as modified by Treuhaft and Lanyi (1987)

$$D_n(\mathbf{R}) = \left\langle [n(\mathbf{r}) - n(\mathbf{r} + \mathbf{R})]^2 \right\rangle = C_n^2 \frac{\|\mathbf{R}\|^{2/3}}{1 + \left[\frac{\|\mathbf{R}\|}{L}\right]^{2/3}}$$

- C_n² is the refractive index structure constant
- L is the saturation length scale
- Close observations in space and time are correlated

Atmospheric turbulence

 Frozen flow theory for equivalence of correlation in space and time

TU Wien Department of Geodesy and Geoinformation Research Division Higher Geodesy

- Correlations can be used in
 - analysis (a priori correlation)
 - simulations (e.g. VGOS)

Climate studies

• Zenith wet delays at Wettzell (Landskron, 2018)

Questions?